Improved Configurations for 3D Acoustoelectric Tomography With a Minimal Number of Electrodes

被引:0
|
作者
Keeshan, Ben [1 ]
Adler, Andy [2 ]
Rossa, Carlos [2 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B, Canada
[2] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Electrical impedance tomography; Electrodes; Conductivity; Image reconstruction; Three-dimensional displays; Sensitivity; Biomedical measurement; Acoustic devices; acoustoelectric tomography; acoustoeletric effect; ELECTRICAL-IMPEDANCE TOMOGRAPHY; CONDUCTIVITY; SPECTROSCOPY;
D O I
10.1109/TBME.2023.3290472
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Acoustoelectric tomography (AET) is a hybrid imaging technique combining ultrasound and electrical impedance tomography (EIT). It exploits the acoustoelectric effect (AAE): an US wave propagating through the medium induces a local change in conductivity, depending on the acoustoelectric properties of the medium. Typically, AET image reconstruction is limited to 2D and most cases employ a large number of surface electrodes. Methods: This article investigates the detectability of contrasts in AET. We characterize the AEE signal as a function of the medium conductivity and electrode placement, using a novel 3D analytical model of the AET forward problem. The proposed model is compared to a finite element method simulation. Results: In a cylindrical geometry with an inclusion contrast of 5 times the background and two pairs of electrodes, the maximum, minimum, and mean suppression of the AEE signal are 68.5%, 3.12%, and 49.0%, respectively, over a random scan of electrode positions. The proposed model is compared to a finite element method simulation and the minimum mesh sizes required successfully model the signal is estimated. Conclusion: We show that the coupling of AAE and EIT leads to a suppressed signal and the magnitude of the reduction is a function of geometry of the medium, contrast and electrode locations. Significance: This model can aid in the reconstruction of AET images involving a minimum number of electrodes to determine the optimal electrode placement.
引用
收藏
页码:3501 / 3512
页数:12
相关论文
共 50 条
  • [1] U2-Net for 3D Electrical Impedance Tomography With Combined Electrodes
    Ye, Ming
    Zhou, Tong
    Li, Xiaocheng
    Yang, Lu
    Liu, Kai
    Yao, Jiafeng
    IEEE SENSORS JOURNAL, 2023, 23 (05) : 4327 - 4335
  • [2] A Clinically Feasible Electrode Array for 3D Intraoperative Electrical Impedance Tomography-Based Surgical Margin Assessment in Robot-Assisted Radical Prostatectomy
    Kossmann, Shannon E.
    Murphy, Ethan K.
    Doussan, Allaire F.
    Lloyd, Sophie
    Halter, Ryan J.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (11) : 3134 - 3145
  • [3] 3D thermal tomography with experimental measurement data
    Toivanen, J. M.
    Tarvainen, T.
    Huttunen, J. M. J.
    Savolainen, T.
    Orlande, H. R. B.
    Kaipio, J. P.
    Kolehmainen, V.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 78 : 1126 - 1134
  • [4] Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization
    Sanchez-Leon, E.
    Leven, C.
    Haslauer, C. P.
    Cirpka, O. A.
    GROUNDWATER, 2016, 54 (04) : 498 - 507
  • [5] Neural networks for classification of strokes in electrical impedance tomography on a 3D head model
    Candiani, Valentina
    Santacesaria, Matteo
    MATHEMATICS IN ENGINEERING, 2022, 4 (04): : 1 - 22
  • [6] 3D electrical tomographic imaging using vertical arrays of electrodes
    Murphy, S. C.
    Stanley, S. J.
    Rhodes, D.
    York, T. A.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (11) : 3053 - 3065
  • [7] Fast absolute 3D CGO-based electrical impedance tomography on experimental tank data
    Hamilton, S. J.
    Muller, P. A.
    Isaacson, D.
    Kolehmainen, V
    Newell, J.
    Rajabi Shishvan, O.
    Saulnier, G.
    Toivanen, J.
    PHYSIOLOGICAL MEASUREMENT, 2022, 43 (12)
  • [8] 3D Microendoscopic Electrical Impedance Tomography for Margin Assessment During Robot-Assisted Laparoscopic Prostatectomy
    Mahara, Aditya
    Khan, Shadab
    Murphy, Ethan K.
    Schned, Alan R.
    Hyams, Elias S.
    Halter, Ryan J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (07) : 1590 - 1601
  • [9] 3D shape based reconstruction of experimental data in Diffuse Optical Tomography
    Zacharopoulos, Athanasios
    Schweiger, Martin
    Kolehmainen, Ville
    Arridge, Simon
    OPTICS EXPRESS, 2009, 17 (21): : 18940 - 18956
  • [10] Sensitivity study and optimization of a 3D electric impedance tomography prostate probe
    Borsic, A.
    Halter, R.
    Wan, Y.
    Hartov, A.
    Paulsen, K. D.
    PHYSIOLOGICAL MEASUREMENT, 2009, 30 (06) : S1 - S18