A CRISPR-based Strategy for Temporally Controlled Site-Specific Editing of RNA Modifications

被引:0
|
作者
Xu, Ying [1 ]
Wang, Yufan [1 ]
Liang, Fu-Sen [1 ]
机构
[1] Case Western Reserve Univ, Dept Chem, 2080 Adelbert Rd, Cleveland, OH 44106 USA
来源
BIO-PROTOCOL | 2023年 / 13卷 / 03期
基金
美国国家卫生研究院;
关键词
CRISPR; Chemically induced proximity; Abscisic acid; RNA modification; m(6)A; Temporal control;
D O I
10.21769/BioProtoc.4607
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chemical modifications on RNA play important roles in regulating its fate and various biological activities. However, the impact of RNA modifications varies depending on their locations on different transcripts and cells/tissues contexts; available tools to dissect context-specific RNA modifications are still limited. Herein, we report the detailed protocol for using a chemically inducible and reversible platform to achieve site-specific editing of the chosen RNA modification in a temporally controlled manner by integrating the clustered regularly interspaced short palindromic repeats (CRISPR) technology and the abscisic acid (ABA)-based chemically induced proximity (CIP) system. The procedures were demonstrated using the example of inducible and reversible N-6-methyladenosine (m(6)A) editing and the evaluation of its impact on RNA properties with ABA addition and reversal with the control of ABA or light.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] CRISPR-Based Allele-Specific Editing for the Treatment of Autosomal Dominant Retinitis Pigmentosa
    Kantardzhieva, Albena
    D'amico, Andrea
    Lam, Daisy
    Butcher, Rossano
    Messana, Angelica
    Noma, Akiko
    Takeuchi, Ryo
    Allocca, Mariacarmela
    Lukason, Michael
    Scharenberg, Andrew
    Pierce, Eric
    Liu, Qin
    Scaria, Abraham
    MOLECULAR THERAPY, 2019, 27 (04) : 258 - 258
  • [22] Temporally controlled site-specific mutagenesis in the germ cell lineage of the mouse testis
    Weber, P
    Schuler, M
    Gérard, C
    Mark, M
    Metzger, D
    Chambon, P
    BIOLOGY OF REPRODUCTION, 2003, 68 (02) : 553 - 559
  • [23] Carrot genome editing using CRISPR-based systems
    Klimek-Chodacka, M.
    Oleszkiewicz, T.
    Qi, Y.
    Baranski, R.
    PROCEEDINGS OF THE II INTERNATIONAL SYMPOSIUM ON CARROT AND OTHER APIACEAE, 2019, 1264 : 53 - 65
  • [24] In Vivo Applications of CRISPR-Based Genome Editing in the Retina
    Yu, Wenhan
    Wu, Zhijian
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2018, 6
  • [25] RiboCas: A Universal CRISPR-Based Editing Tool for Clostridium
    Canadas, Ines C.
    Groothuis, Daphne
    Zygouropoulou, Maria
    Rodrigues, Raquel
    Minton, Nigel P.
    ACS SYNTHETIC BIOLOGY, 2019, 8 (06): : 1379 - 1390
  • [26] A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila
    Xu, Jiang
    Ren, Xingjie
    Sun, Jin
    Wang, Xia
    Qiao, Huan-Huan
    Xu, Bo-Wen
    Liu, Lu-Ping
    Ni, Jian-Quan
    JOURNAL OF GENETICS AND GENOMICS, 2015, 42 (04) : 141 - 149
  • [27] A critical look on CRISPR-based genome editing in plants
    Ahmad, Niaz
    Rahman, Mehboob-ur
    Mukhtar, Zahid
    Zafar, Yusuf
    Zhang, Baohong
    JOURNAL OF CELLULAR PHYSIOLOGY, 2020, 235 (02) : 666 - 682
  • [28] Computational tools and scientometrics for CRISPR-based genome editing
    Balakrishnan, M.
    Kotla, Anuradha
    Agarwal, Surekha
    Krishnan, P.
    Supriya, P.
    Srinivasa Rao, Ch.
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2023, 32 (4) : 808 - 817
  • [29] A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila
    Jiang Xu
    Xingjie Ren
    Jin Sun
    Xia Wang
    Huan-Huan Qiao
    Bo-Wen Xu
    Lu-Ping Liu
    Jian-Quan Ni
    JournalofGeneticsandGenomics, 2015, 42 (04) : 141 - 149
  • [30] Engineering the Delivery System for CRISPR-Based Genome Editing
    Glass, Zachary
    Lee, Matthew
    Li, Yamin
    Xu, Qiaobing
    TRENDS IN BIOTECHNOLOGY, 2018, 36 (02) : 173 - 185