Integrated Bone Formation Through In Vivo Endochondral Ossification Using Mesenchymal Stem Cells

被引:0
|
作者
Yamazaki, Shintaro [1 ,2 ]
Lin, Yujing [3 ]
Marukawa, Eriko [3 ]
Ikeda, Masa-Aki [1 ,3 ]
机构
[1] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Dept Mol Craniofacial Embryol, Tokyo, Japan
[2] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Dept Maxillofacial Surg, Tokyo, Japan
[3] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Dept Regenerat & Reconstruct Dent Med, Tokyo, Japan
来源
基金
日本学术振兴会;
关键词
HYALURONIC-ACID; CHONDROGENIC DIFFERENTIATION; HYDROGELS; CARTILAGE; SCAFFOLD; VASCULARIZATION; REGENERATION; CHONDROCYTES; AUTOGRAFTS; STRATEGIES;
D O I
10.3791/65573
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional bone regeneration therapy using mesenchymal stem cells (MSCs) is difficult to apply to bone defects larger than the critical size because it does not have a mechanism to induce angiogenesis. Implanting artificial cartilage tissue fabricated from MSCs induces angiogenesis and bone formation in vivo via endochondral ossification (ECO). Therefore, this ECO-mediated approach may be a promising bone regeneration therapy in the future. An important aspect of the clinical application of this ECO-mediated approach is establishing a protocol for preparing enough cartilage to be implanted to repair the bone defect. It is especially not practical to design a single mass of grafted cartilage of a size that conforms to the shape of the actual bone defect. Therefore, the cartilage to be transplanted must have the property of forming bone integrally when multiple pieces are implanted. Hydrogels may be an attractive tool for scaling up tissue-engineered grafts for endochondral ossification to meet clinical requirements. Although many naturally derived hydrogels support MSC cartilage formation in vitro and ECO in vivo , the optimal scaffold material to meet the needs of clinical applications has yet to be determined. Hyaluronic acid (HA) is a crucial component of the cartilage extracellular matrix and is a biodegradable and biocompatible polysaccharide. Here, we show that HA hydrogels have excellent properties to support in vitro differentiation of MSC-based cartilage tissue and promote endochondral bone formation in vivo.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] PRESERVED CAPACITY FOR IN VIVO BONE FORMATION BY MESENCHYMAL STEM CELLS FROM OSTEOPOROTIC PATIENTS
    Lopez Delgado, Laura
    Perez-Nunez, Maria I.
    Laguna, Esther
    Menendez, Guillermo
    Garcia-Ibarbia, Carmen
    Fakkas, Miguel
    Riancho, J. A.
    Sanudo, Carolina
    Del Real, Alvaro
    Merino, Jesus
    JOURNAL OF BONE AND MINERAL RESEARCH, 2019, 34 : 224 - 224
  • [32] Modulating Endochondral Ossification of Multipotent Stromal Cells for Bone Regeneration
    Gawlitta, Debby
    Farrell, Eric
    Malda, Jos
    Creemers, Laura B.
    Alblas, Jacqueline
    Dhert, Wouter J. A.
    TISSUE ENGINEERING PART B-REVIEWS, 2010, 16 (04) : 385 - 395
  • [33] Generation of a Bone Organ by Human Adipose-derived Stromal Cells through Endochondral Ossification
    Osinga, R.
    di Maggio, N.
    Todorov, A., Jr.
    Allafi, N.
    Barbero, A.
    Laurent, F.
    Schaefer, D. J.
    Martin, I.
    Scherberich, A.
    TISSUE ENGINEERING PART A, 2015, 21 : S119 - S119
  • [34] Human bone marrow mesenchymal stem cells in vivo
    Jones, E.
    McGonagle, D.
    RHEUMATOLOGY, 2008, 47 (02) : 126 - 131
  • [35] Endochondral ossification is required for haematopoietic stem-cell niche formation
    Chan, Charles K. F.
    Chen, Ching-Cheng
    Luppen, Cynthia A.
    Kim, Jae-Beom
    DeBoer, Anthony T.
    Wei, Kevin
    Helms, Jill A.
    Kuo, Calvin J.
    Kraft, Daniel L.
    Weissman, Irving L.
    NATURE, 2009, 457 (7228) : 490 - U9
  • [36] Generation of a Bone Organ by Human Adipose-Derived Stromal Cells Through Endochondral Ossification
    Osinga, Rik
    Di Maggio, Nunzia
    Todorov, Atanas
    Allafi, Nima
    Barbero, Andrea
    Laurent, Ferederic
    Schaefer, Dirk Johannes
    Martin, Ivan
    Scherberich, Arnaud
    STEM CELLS TRANSLATIONAL MEDICINE, 2016, 5 (08) : 1090 - 1097
  • [37] Endochondral ossification is required for haematopoietic stem-cell niche formation
    Charles K. F. Chan
    Ching-Cheng Chen
    Cynthia A. Luppen
    Jae-Beom Kim
    Anthony T. DeBoer
    Kevin Wei
    Jill A. Helms
    Calvin J. Kuo
    Daniel L. Kraft
    Irving L. Weissman
    Nature, 2009, 457 : 490 - 494
  • [38] Cyclic Tensile Strain Can Play a Role in Directing both Intramembranous and Endochondral Ossification of Mesenchymal Stem Cells
    Carroll, Simon F.
    Buckley, Conor T.
    Kelly, Daniel J.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2017, 5
  • [39] In vivo endochondral bone formation using a bone morphogenetic protein 2 adenoviral vector
    Alden, TD
    Pittman, DD
    Hankins, GR
    Beres, EJ
    Engh, JA
    Das, S
    Hudson, SB
    Kerns, KM
    Kallmes, DF
    Helm, GA
    HUMAN GENE THERAPY, 1999, 10 (13) : 2245 - 2253
  • [40] The mode of row formation of cartilage cells in endochondral ossification.
    Dodds, G. S.
    ANATOMICAL RECORD, 1930, 45 (03): : 213 - 213