Integrated Bone Formation Through In Vivo Endochondral Ossification Using Mesenchymal Stem Cells

被引:0
|
作者
Yamazaki, Shintaro [1 ,2 ]
Lin, Yujing [3 ]
Marukawa, Eriko [3 ]
Ikeda, Masa-Aki [1 ,3 ]
机构
[1] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Dept Mol Craniofacial Embryol, Tokyo, Japan
[2] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Dept Maxillofacial Surg, Tokyo, Japan
[3] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Dept Regenerat & Reconstruct Dent Med, Tokyo, Japan
来源
基金
日本学术振兴会;
关键词
HYALURONIC-ACID; CHONDROGENIC DIFFERENTIATION; HYDROGELS; CARTILAGE; SCAFFOLD; VASCULARIZATION; REGENERATION; CHONDROCYTES; AUTOGRAFTS; STRATEGIES;
D O I
10.3791/65573
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conventional bone regeneration therapy using mesenchymal stem cells (MSCs) is difficult to apply to bone defects larger than the critical size because it does not have a mechanism to induce angiogenesis. Implanting artificial cartilage tissue fabricated from MSCs induces angiogenesis and bone formation in vivo via endochondral ossification (ECO). Therefore, this ECO-mediated approach may be a promising bone regeneration therapy in the future. An important aspect of the clinical application of this ECO-mediated approach is establishing a protocol for preparing enough cartilage to be implanted to repair the bone defect. It is especially not practical to design a single mass of grafted cartilage of a size that conforms to the shape of the actual bone defect. Therefore, the cartilage to be transplanted must have the property of forming bone integrally when multiple pieces are implanted. Hydrogels may be an attractive tool for scaling up tissue-engineered grafts for endochondral ossification to meet clinical requirements. Although many naturally derived hydrogels support MSC cartilage formation in vitro and ECO in vivo , the optimal scaffold material to meet the needs of clinical applications has yet to be determined. Hyaluronic acid (HA) is a crucial component of the cartilage extracellular matrix and is a biodegradable and biocompatible polysaccharide. Here, we show that HA hydrogels have excellent properties to support in vitro differentiation of MSC-based cartilage tissue and promote endochondral bone formation in vivo.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Recapitulating endochondral ossification: a promising route to in vivo bone regeneration
    Thompson, Emmet M.
    Matsiko, Amos
    Farrell, Eric
    Kelly, Daniel J.
    O'Brien, Fergal J.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2015, 9 (08) : 889 - 902
  • [22] In vitro reproduction of endochondral ossification using a 3D mesenchymal stem cell construct
    Sasaki, Jun-Ichi
    Matsumoto, Takuya
    Egusa, Hiroshi
    Matsusaki, Michiya
    Nishiguchi, Akihiro
    Nakano, Takayoshi
    Akashi, Mitsuru
    Imazato, Satoshi
    Yatani, Hirofumi
    INTEGRATIVE BIOLOGY, 2012, 4 (10) : 1207 - 1214
  • [23] Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation
    Yang, Wanxun
    Both, Sanne K.
    van Osch, Gerjo J. V. M.
    Wang, Yining
    Jansen, John A.
    Yang, Fang
    ACTA BIOMATERIALIA, 2015, 13 : 254 - 265
  • [24] Pericapillary Bone Formation by Mural Osteoblasts during Endochondral Ossification
    Takada, Ichiro
    Nango, Nobuhito
    Takeda, Yoshihiro
    Momose, Atsushi
    Kubota, Yoshiaki
    Kanzaki, Sho
    Shimoda, Kouji
    Takada, Yasunari
    Bakiri, Latifa
    Wagner, Erwin
    Matsuo, Koichi
    JOURNAL OF BONE AND MINERAL RESEARCH, 2013, 28
  • [25] Chondrogenic pre-induction of human mesenchymal stem cells on β-TCP: Enhanced bone quality by endochondral heterotopic bone formation
    Janicki, Patricia
    Kasten, Philip
    Kleinschmidt, Kerstin
    Luginbuehl, Reto
    Richter, Wiltrud
    ACTA BIOMATERIALIA, 2010, 6 (08) : 3292 - 3301
  • [26] Hydrogel Composition Regulates Chondrogenesis by Mesenchymal Stem Cells and Endochondral Ossification in Engineered Cartilaginous Interfacial Tissues
    Chen, J.
    Donius, A. E.
    Taboas, J. M.
    TISSUE ENGINEERING PART A, 2016, 22 : S131 - S131
  • [27] Endochondral bone tissue engineering using embryonic stem cells
    Jukes, Jojanneke M.
    Both, Sanne K.
    Leusink, Anouk
    Sterk, Lotus M. Th.
    Van Blitterswijk, Clemens A.
    De Boer, Jan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (19) : 6840 - 6845
  • [28] IL-1β modulates in vitro remodeling and in vivo bone formation by endochondral primed human bone marrow mesenchymal stromal cells
    Mumme, Marcus
    Scotti, Celeste
    Todoro, Athanas
    Jakob, Marcel
    Wendt, David
    Martin, Ivan
    Barbero, Andrea
    SWISS MEDICAL WEEKLY, 2012, 142 : S48 - S48
  • [29] IL-1β modulates in vitro remodeling and in vivo bone formation by endochondral primed human bone marrow mesenchymal stromal cells
    Mumme, M.
    Scotti, C.
    Papadimitropoulos, A.
    Todorov, A.
    Gueven, S.
    Hoffmann, W.
    Jakob, M.
    Wendt, D.
    Martin, I.
    Barbero, A.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 31 - 32
  • [30] In Vitro Dexamethasone Pretreatment Enhances Bone Formation of Human Mesenchymal Stem Cells In Vivo
    Song, In-Hwan
    Caplan, Arnold I.
    Dennis, James E.
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2009, 27 (07) : 916 - 921