Cutoff phenomenon and entropic uncertainty for random quantum circuits

被引:2
作者
Oh, Sangchul [1 ,2 ,3 ]
Kais, Sabre [1 ,2 ]
机构
[1] Purdue Univ, Dept Chem, Dept Phys & Astron, W Lafayette, IN 47907 USA
[2] Purdue Univ, Purdue Quantum Sci & Engn Inst, W Lafayette, IN 47907 USA
[3] Southern Illinois Univ, Sch Phys & Appl Phys, Carbondale, IL 62901 USA
来源
ELECTRONIC STRUCTURE | 2023年 / 5卷 / 03期
基金
美国国家科学基金会;
关键词
random circuits; quantum computing; cutoff phenomenon; random walks; SUPREMACY;
D O I
10.1088/2516-1075/acf2d3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
How fast a state of a system converges to a stationary state is one of the fundamental questions in science. Some Markov chains and random walks on finite groups are known to exhibit the non-asymptotic convergence to a stationary distribution, called the cutoff phenomenon. Here, we examine how quickly a random quantum circuit could transform a quantum state to a Haar-measure random quantum state. We find that random quantum states, as stationary states of random walks on a unitary group, are invariant under the quantum Fourier transform (QFT). Thus the entropic uncertainty of random quantum states has balanced Shannon entropies for the computational basis and the QFT basis. By calculating the Shannon entropy for random quantum states and the Wasserstein distances for the eigenvalues of random quantum circuits, we show that the cutoff phenomenon occurs for the random quantum circuit. It is also demonstrated that the Dyson-Brownian motion for the eigenvalues of a random unitary matrix as a continuous random walk exhibits the cutoff phenomenon. The results here imply that random quantum states could be generated with shallow random circuits.
引用
收藏
页数:7
相关论文
共 31 条
  • [1] SHUFFLING CARDS AND STOPPING-TIMES
    ALDOUS, D
    DIACONIS, P
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (05) : 333 - 348
  • [2] Entropy and time
    Ambegaokar, V
    Clerk, AA
    [J]. AMERICAN JOURNAL OF PHYSICS, 1999, 67 (12) : 1068 - 1073
  • [3] Arute F., 2019, NATURE, V574, P505, DOI [10.1038/s41586-019-1666-5, DOI 10.1038/S41586-019-1666-5]
  • [4] Bayer D., 1992, Ann. Appl. Probab, V2, P294, DOI [10.1214/aoap/1177005705, DOI 10.1214/AOAP/1177005705]
  • [5] Characterizing quantum supremacy in near-term devices
    Boixo, Sergio
    Isakov, Sergei, V
    Smelyanskiy, Vadim N.
    Babbush, Ryan
    Ding, Nan
    Jiang, Zhang
    Bremner, Michael J.
    Martinis, John M.
    Neven, Hartmut
    [J]. NATURE PHYSICS, 2018, 14 (06) : 595 - 600
  • [6] Entropic uncertainty relations and their applications
    Coles, Patrick J.
    Berta, Mario
    Tomamichel, Marco
    Wehner, Stephanie
    [J]. REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
  • [7] UNCERTAINTY IN QUANTUM MEASUREMENTS
    DEUTSCH, D
    [J]. PHYSICAL REVIEW LETTERS, 1983, 50 (09) : 631 - 633
  • [8] The cutoff phenomenon in finite Markov chains
    Diaconis, P
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (04) : 1659 - 1664
  • [9] Diaconis P., 1990, Random Structures & Algorithms, V1, P51, DOI [10.1002/rsa.3240010105, DOI 10.1002/RSA.3240010105]
  • [10] Ehrenfest P., 1907, 2 BEKANNTE EINWANDE