Exogenous application of stevioside enhances root growth promotion in soybean (Glycine max (L.) Merrill)

被引:2
作者
Saravanan, Krishnagowdu [1 ]
Vidya, Nandakumar [1 ]
Halka, Jayachandran [1 ]
Preethi, Ravichandran Priyanka [1 ]
Appunu, Chinnaswamy [2 ]
Radhakrishnan, Ramalingam [3 ]
Arun, Muthukrishnan [1 ]
机构
[1] Bharathiar Univ, Dept Biotechnol, Coimbatore 641046, Tamil Nadu, India
[2] Sugarcane Breeding Inst, Div Crop Improvement, ICAR, Coimbatore 641007, Tamil Nadu, India
[3] Jamal Mohamed Coll, Dept Bot, Trichy 620020, Tamil Nadu, India
关键词
Soybean; Stevioside; Root growth development; Antioxidant enzymes; Gene expression; SYSTEM ARCHITECTURE; ANTIOXIDANT DEFENSE; AUXIN BIOSYNTHESIS; SALT TOLERANCE; PLANT; SUGAR; GLUCOSE; STRESS; SEEDLINGS; ENZYME;
D O I
10.1016/j.plaphy.2023.107881
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The present study aims to investigate the impact of externally applied stevioside (a sugar-based glycoside) on soybean root growth by examining morpho-physiological characteristics, biochemical parameters, and gene expression. Soybean seedlings (10-day-old) were treated with stevioside (0, 8.0 & mu;M, 24.5 & mu;M, and 40.5 & mu;M) for four times at six days' intervals by soil drenching. Treatment with 24.5 & mu;M stevioside significantly increased root length (29.18 cm plant-1), root numbers (38.5 plant-1), root biomass (0.95 g plant-1 FW; 0.18 g plant-1 DW), shoot length (30.96 cm plant-1), and shoot biomass (2.14 g plant-1 FW; 0.36 g plant-1 DW) compared to the control. Moreover, 24.5 & mu;M of stevioside was effective in enhancing photosynthetic pigments, leaf relative water content, and antioxidant enzymes compared to control. Conversely, plants exposed to a higher concentration of stevioside (40.5 & mu;M), elevated total polyphenolic content, total flavonoid content, DPPH activity, total soluble sugars, reducing sugars, and proline content. Furthermore, gene expression of root growth development-related genes such as GmYUC2a, GmAUX2, GmPIN1A, GmABI5, GmPIF, GmSLR1, and GmLBD14 in stevioside-treated soybean plants were evaluated. Stevioside (8.0 & mu;M) showed significant expression of GmPIN1A, whereas, 40.5 & mu;M of stevioside enhanced GmABI5 expression. In contrast, most of the root growth development genes such as GmYUC2a, GmAUX2, GmPIF, GmSLR1, and GmLBD14, were highly expressed at 24.5 & mu;M of stevioside treatment. Taken together, our results demonstrate the potential of stevioside in improving morpho-physiological traits, biochemical status, and the expression of root development genes in soybean. Hence, stevioside could be used as a supplement to enhance plant performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Effect of Gamma Radiation on Growth Factors, Biochemical Parameters, and Accumulation of Trace Elements in Soybean Plants (Glycine max L. Merrill)
    Alikamanoglu, Sema
    Yaycili, Orkun
    Sen, Ayse
    BIOLOGICAL TRACE ELEMENT RESEARCH, 2011, 141 (1-3) : 283 - 293
  • [22] GmBRC1 is a Candidate Gene for Branching in Soybean (Glycine max (L.) Merrill)
    Shim, Sangrea
    Ha, Jungmin
    Kim, Moon Young
    Choi, Man Soo
    Kang, Sung-Taeg
    Jeong, Soon-Chun
    Moon, Jung-Kyung
    Lee, Suk-Ha
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (01):
  • [23] Genetic Analysis of Yield and its Component in Soybean [Glycine max (L.) Merrill]
    Singh, Minakshi
    Vatsa, V. K.
    VEGETOS, 2009, 22 (01): : 91 - 96
  • [24] Stability analysis for various quantitative traits in soybean [Glycine max (L.) Merrill]
    Tiwari, Gunjan
    Singh, Kamendra
    Pushpendra
    Singh, N. K.
    Legume Research, 2016, 39 (04) : 517 - 522
  • [25] Isolation and culture of soybean (Glycine max L. Merrill) microspores and pollen grains
    Rodrigues, Lia Rosane
    Forte, Bianca de Camargo
    Bodanese-Zanettini, Maria Helena
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2006, 49 (04) : 537 - 545
  • [26] CHEMICAL COMPOSITION AND SOLUBLE IRON CONTENT IN SOYBEAN [Glycine max (L.) Merrill]
    Paiva Yamada, Leticia Tamie
    Piccolo Barcelos, Maria de Fatima
    de Sousa, Raimundo Vicente
    de Lima, Andrelisa Lina
    CIENCIA E AGROTECNOLOGIA, 2003, 27 (02): : 406 - 413
  • [27] Gene Action For Yield and its Components in Soybean (Glycine max (L.) Merrill)
    Datt, Shiv
    Noren, S. K.
    Bhadana, V. P.
    Sharma, P. R.
    VEGETOS, 2011, 24 (01): : 89 - 92
  • [28] Bacteria associated with the rhizosphere, rhizoplane and phyllosphere of soybean (Glycine max L.) Merrill
    Sagardoy, MA
    Pérez, MT
    Gómez, MA
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2000, 66 : 67 - 74
  • [29] Correlation Studies of Quantitative and Qualitative Traits in Soybean (Glycine max (L.) Merrill)
    Vatsa, V. K.
    Singh, Minakshi
    VEGETOS, 2008, 21 (02): : 129 - 135
  • [30] Physiological responses of soybean (Glycine max (L.) Merrill) cultivars to copper excess
    Schwalbert, Raissa
    Silva, Lincon O. S.
    Schwalbert, Rai A.
    Tarouco, Camila P.
    Fernandes, Gillian S.
    Marques, Anderson C. R.
    Costa, Camila C.
    Hammerschmitt, Rodrigo K.
    Brunetto, Gustavo
    Nicoloso, Fernando T.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2019, 91 (04):