Self-Weighted Graph-Based Framework for Multi-View Clustering

被引:2
|
作者
He, Yanfang [1 ]
Yusof, Umi Kalsom [1 ]
机构
[1] Univ Sains Malaysia, Sch Comp Sci, Gelugor 11800, Penang, Malaysia
关键词
Clustering algorithms; Clustering methods; Laplace equations; Sparse matrices; Robustness; Linear programming; Knowledge discovery; Graph framework; L1-norm; multi-view clustering; rank constraint; unified graph matrix;
D O I
10.1109/ACCESS.2023.3260971
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple perspectives can be used to explore rich and complex datasets that are widely used in many applications. However, in real-world applications, the multi-view data are often noisy because of various environmental factors. The key challenge of graph-based multi-view clustering is obtaining a consistent clustering structure. Most graph-based methods learn independently in one view how similar the data points in each view are to one another. However, the consistency of information in a multi-view dataset is easily overlooked, causing an unsatisfactory unified graph matrix. To address these problems, this study proposes a novel self-weighted graph-based framework for multi-view clustering (SGMF). This framework integrates these initial similar graph matrices into a unified graph matrix by assigning different weights to the initial graphs of each view. This algorithm's goal is to effectively learn a unified graph matrix and eliminate noise or irrelevant information from the dataset. This is the first time a generalized multi-view framework based on the L1-norm has been proposed. L1-norm can be used to improve the robustness of the algorithm. Particularly, SGMF can automatically weigh each view's initial similar graph matrix to solve the noise problem and obtain a consistent data structure. Simultaneously, a rank constraint is imposed on the graph Laplacian matrix of the final unified matrix, which helps to automatically divide the data points into the appropriate number of clusters. The experimental results on synthetic and real datasets verify the effectiveness and superiority of the proposed method over the latest baseline.
引用
收藏
页码:30197 / 30207
页数:11
相关论文
共 50 条
  • [1] Self-weighted graph learning for multi-view clustering
    Shu, Xiaochuang
    Zhang, Xiangdong
    Wang, Qianqian
    NEUROCOMPUTING, 2022, 501 : 188 - 196
  • [2] GMC: Graph-Based Multi-View Clustering
    Wang, Hao
    Yang, Yan
    Liu, Bing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (06) : 1116 - 1129
  • [3] Self-Weighted Anchor Graph Learning for Multi-View Clustering
    Shu, Xiaochuang
    Zhang, Xiangdong
    Gao, Quanxue
    Yang, Ming
    Wang, Rong
    Gao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5485 - 5499
  • [4] Self-weighted Multi-view Fuzzy Clustering
    Zhu, Xiaofeng
    Zhang, Shichao
    Zhu, Yonghua
    Zheng, Wei
    Yang, Yang
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2020, 14 (04)
  • [5] Robust Joint Graph Learning for Multi-View Clustering
    He, Yanfang
    Yusof, Umi Kalsom
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 722 - 734
  • [6] Self-Weighted Contrastive Fusion for Deep Multi-View Clustering
    Wu, Song
    Zheng, Yan
    Ren, Yazhou
    He, Jing
    Pu, Xiaorong
    Huang, Shudong
    Hao, Zhifeng
    He, Lifang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9150 - 9162
  • [7] Self-weighted multi-view clustering with soft capped norm
    Huang, Shudong
    Kang, Zhao
    Xu, Zenglin
    KNOWLEDGE-BASED SYSTEMS, 2018, 158 : 1 - 8
  • [8] Self-Weighted Multi-View Clustering with Deep Matrix Factorization
    Cui, Beilei
    Yu, Hong
    Zhang, Tiantian
    Li, Siwen
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 567 - 582
  • [9] A study of graph-based system for multi-view clustering
    Wang, Hao
    Yang, Yan
    Liu, Bing
    Fujita, Hamido
    KNOWLEDGE-BASED SYSTEMS, 2019, 163 : 1009 - 1019
  • [10] Multi-View Attributed Graph Clustering
    Lin, Zhiping
    Kang, Zhao
    Zhang, Lizong
    Tian, Ling
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1872 - 1880