Genome-wide analysis of the laccase (LAC) gene family in Aeluropus littoralis: A focus on identification, evolution and expression patterns in response to abiotic stresses and ABA treatment

被引:33
|
作者
Hashemipetroudi, Seyyed Hamidreza [1 ,2 ]
Arab, Mozhdeh [1 ,3 ]
Heidari, Parviz [4 ]
Kuhlmann, Markus [2 ]
机构
[1] Sari Agr Sci & Nat Resources Univ SANRU, Genet & Agr Biotechnol Inst Tabarestan GABIT, Dept Genet Engn & Biol, Sari, Iran
[2] Leibniz Inst Plant Genet & Crop Plant Res IPK, RG Heterosis, Gatersleben, Germany
[3] Natl Inst Genet Engn & Biotechnol NIGEB, Tehran, Iran
[4] Shahrood Univ Technol, Fac Agr, Shahrood, Iran
来源
关键词
ABA treatment; salt stress; cold stress; gene expression; gene structure; plant gene family; LIGNIFICATION; PREDICTION; PROMOTER; CDNAS;
D O I
10.3389/fpls.2023.1112354
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Laccases are plant enzymes with essential functions during growth and development. These monophenoloxidases are involved in lignin polymerization, and their expression respond to environmental stress. However, studies of laccases in some plants and fungi have highlighted that many structural and functional aspects of these genes are still unknown. Here, the laccase gene family in Aeluropus littoralis (AlLAC) is described based on sequence structure and expression patterns under abiotic stresses and ABA treatment. Fifteen non-redundant AlLACs were identified from the A. littoralis genome, which showed differences in physicochemical characteristics and gene structure. Based on phylogenetic analysis, AlLACs and their orthologues were classified into five groups. A close evolutionary relationship was observed between LAC gene family members in rice and A. littoralis. According to the interaction network, AlLACs interact more with proteins involved in biological processes such as iron incorporation into the metallo-sulfur cluster, lignin catabolism, regulation of the symbiotic process and plant-type primary cell wall biogenesis. Gene expression analysis of selected AlLACs using real-time RT (reverse transcription)-PCR revealed that AlLACs are induced in response to abiotic stresses such as cold, salt, and osmotic stress, as well as ABA treatment. Moreover, AlLACs showed differential expression patterns in shoot and root tissues. Our findings indicate that AlLACs are preferentially involved in the late response of A. littoralis to abiotic stress.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Genome-Wide Identification and Expression Analysis of the Cucumber FKBP Gene Family in Response to Abiotic and Biotic Stresses
    Yang, Dekun
    Li, Yahui
    Zhu, Mengdi
    Cui, Rongjing
    Gao, Jiong
    Shu, Yingjie
    Lu, Xiaomin
    Zhang, Huijun
    Zhang, Kaijing
    GENES, 2023, 14 (11)
  • [2] Genome-Wide Identification and Expression Analysis of Eggplant DIR Gene Family in Response to Biotic and Abiotic Stresses
    Zhang, Kaijing
    Xing, Wujun
    Sheng, Suao
    Yang, Dekun
    Zhen, Fengxian
    Jiang, Haikun
    Yan, Congsheng
    Jia, Li
    HORTICULTURAE, 2022, 8 (08)
  • [3] Genome-Wide Identification and Characterization of Soybean GmLOR Gene Family and Expression Analysis in Response to Abiotic Stresses
    Fang, Yisheng
    Cao, Dong
    Yang, Hongli
    Guo, Wei
    Ouyang, Wenqi
    Chen, Haifeng
    Shan, Zhihui
    Yang, Zhonglu
    Chen, Shuilian
    Li, Xia
    Chen, Limiao
    Zhou, Xinan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (22)
  • [4] Genome-wide characterization and expression analysis of the HAK gene family in response to abiotic stresses in Medicago
    Qian Li
    Wenxuan Du
    Xinge Tian
    Wenbo Jiang
    Bo Zhang
    Yuxiang Wang
    Yongzhen Pang
    BMC Genomics, 23
  • [5] Genome-wide characterization and expression analysis of the HAK gene family in response to abiotic stresses in Medicago
    Li, Qian
    Du, Wenxuan
    Tian, Xinge
    Jiang, Wenbo
    Zhang, Bo
    Wang, Yuxiang
    Pang, Yongzhen
    BMC GENOMICS, 2022, 23 (01)
  • [6] Genome-wide identification and expression analysis of Arabidopsis GRAM-domain containing gene family in response to abiotic stresses and PGPR treatment
    Tiwari, Shalini
    Muthamilarasan, Mehanathan
    Lata, Charu
    JOURNAL OF BIOTECHNOLOGY, 2021, 325 : 7 - 14
  • [7] Genome-Wide Identification and Expression Analysis of the Melon Aldehyde Dehydrogenase (ALDH) Gene Family in Response to Abiotic and Biotic Stresses
    Yang, Dekun
    Chen, Hongli
    Zhang, Yu
    Wang, Yan
    Zhai, Yongqi
    Xu, Gang
    Ding, Qiangqiang
    Wang, Mingxia
    Zhang, Qi-an
    Lu, Xiaomin
    Yan, Congsheng
    PLANTS-BASEL, 2024, 13 (20):
  • [8] Genome-wide identification of WRKY gene family and expression analysis under abiotic stresses in Andrographis paniculata
    Wang, Qichao
    Zeng, Wujing
    Ali, Basharat
    Zhang, Xuemin
    Xu, Ling
    Liang, Zongsuo
    BIOCELL, 2021, 45 (04) : 1107 - 1119
  • [9] Genome-wide identification of NAC gene family and expression analysis under abiotic stresses in Salvia miltiorrhiza
    Li, Xin
    Pan, Jianmin
    Islam, Faisal
    Li, Juanjuan
    Hou, Zhuoni
    Yang, Zongqi
    Xu, Ling
    BIOCELL, 2022, 46 (08) : 1947 - 1958
  • [10] Genome-Wide Identification of NAC Gene Family and Expression Analysis under Abiotic Stresses in Avena sativa
    Ling, Lei
    Li, Mingjing
    Chen, Naiyu
    Xie, Xinying
    Han, Zihui
    Ren, Guoling
    Yin, Yajie
    Jiang, Huixin
    GENES, 2023, 14 (06)