Recent developments in membraneless electrolysis

被引:11
作者
Manzotti, Alessandro [1 ]
Robson, Matthew J. [1 ]
Ciucci, Francesco [1 ,2 ,3 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Hong Kong, Peoples R China
[2] HKUST Shenzhen Hong Kong Collaborat Innovat Res In, Shenzhen, Peoples R China
[3] Hong Kong Univ Sci & Tech nol, Energy Inst, Hong Kong, Peoples R China
关键词
Membraneless electrolyzers; Hydrogen; Electrolysis; Classification; Chemical production; HYDROGEN-PRODUCTION; WATER ELECTROLYZER; FLOW; PERFORMANCE; TEMPERATURE; SEPARATION; OXYGEN; COST;
D O I
10.1016/j.cogsc.2023.100765
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Membraneless electrolyzers (MEs) are an exciting emerging technology for efficient hydrogen production, chemical production, and carbon capture. Unlike conventional electrolyzers, which employ an ion-conducting, impermeable membrane between the electrodes to separate product gases, MEs achieve gas separation with fluid-dynamic forces. The absence of a membrane affords greater application versatility, and more inexpensive and rapid production than conventional electrolyzers, owing to their simpler design. However, further improvements in efficiency and output gas purity would aid the commercialization of ME technology. This work presents a concise review, characterization, and comparison of the emerging ME architectures, and provides guidance for future research in the field.
引用
收藏
页数:11
相关论文
共 56 条
  • [1] Understanding Bubble-Induced Overpotential Losses in Multiphase Flow Electrochemical Reactors
    Angulo, Andrea E.
    Frey, Daniel
    Modestino, Miguel A.
    [J]. ENERGY & FUELS, 2022, 36 (14) : 7908 - 7914
  • [2] 3D-Printed electrodes for membraneless water electrolysis
    Bui, Justin C.
    Davis, Jonathan T.
    Esposito, Daniel V.
    [J]. SUSTAINABLE ENERGY & FUELS, 2020, 4 (01) : 213 - 225
  • [3] Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density
    Chandesris, M.
    Medeau, V.
    Guillet, N.
    Chelghoum, S.
    Thoby, D.
    Fouda-Onana, F.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (03) : 1353 - 1366
  • [4] High Speed Video Investigation of Bubble Dynamics and Current Density Distributions in Membraneless Electrolyzers
    Davis, J. T.
    Brown, D. E.
    Pang, X.
    Esposito, D. V.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) : F312 - F321
  • [5] Floating membraneless PV-electrolyzer based on buoyancy-driven product separation
    Davis, Jonathan T.
    Qi, Ji
    Fan, Xinran
    Bui, Justin C.
    Esposito, Daniel V.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (03) : 1224 - 1238
  • [6] Microfabrication of the Ammonia Plasma-Activated Nickel Nitride-Nickel Thin Film for Overall Water Splitting in the Microfluidic Membraneless Electrolyzer
    De, Biswajit S.
    Kumar, Pawan
    Khare, Neeraj
    Luo, Jing-Li
    Elias, Anastasia
    Basu, Suddhasatwa
    [J]. ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) : 9639 - 9652
  • [7] An electrochemical neutralization energy-assisted membrane-less microfluidic reactor for water electrolysis
    De, Biswajit S.
    Singh, Aditya
    Elias, Anastasia
    Khare, Neeraj
    Basu, Suddhasatwa
    [J]. SUSTAINABLE ENERGY & FUELS, 2020, 4 (12) : 6234 - 6244
  • [8] Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application
    De, Biswajit Samir
    Cunningham, Joshua
    Khare, Neeraj
    Luo, Jing-Li
    Elias, Anastasia
    Basu, Suddhasatwa
    [J]. APPLIED ENERGY, 2022, 305
  • [9] Membraneless Electrolyzers for Low-Cost Hydrogen Production in a Renewable Energy Future
    Esposito, Daniel V.
    [J]. JOULE, 2017, 1 (04) : 651 - 658
  • [10] Scalable hydrogen production from a mono-circular filter press Divergent Electrode-Flow-Through alkaline electrolysis stack
    Gillespie, M. I.
    Kriek, R. J.
    [J]. JOURNAL OF POWER SOURCES, 2018, 397 : 204 - 213