A weak Galerkin finite element method for the Kelvin-Voigt viscoelastic fluid flow model

被引:6
|
作者
Duan, Mengmeng [1 ]
Yang, Yan [2 ]
Feng, Minfu [1 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610065, Peoples R China
[2] Southwest Petr Univ, Sch Sci, Chengdu 610500, Peoples R China
基金
中国国家自然科学基金;
关键词
Weak Galerkin; Finite element method; The Kelvin-Voigt model; Error estimates; NAVIER-STOKES PROBLEM; DISCONTINUOUS GALERKIN; APPROXIMATION; EQUATIONS; MOTION;
D O I
10.1016/j.apnum.2022.10.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a weak Galerkin finite element method for the Kelvin-Voigt viscoelastic fluid flow model. Firstly, the weak Galerkin finite element method is used to approximate the spatial variable and we use piecewise polynomials of degrees k, k - 1and k - 1(k >= 1) to approximate the velocity, pressure, and the numerical trace of the velocity on the interfaces of elements, respectively. Secondly, the backward Euler difference method is adopted in the temporal discretization for the fully discrete scheme. Furthermore, the stability and optimal convergence of numerical solutions in L-infinity (L-2) and L-infinity (H-1)-norms of velocity as well as L-infinity (L-2)-norm of pressure were presented. Finally, numerical examples verify the effectiveness of the proposed method, which also obtain that the algorithm has convergence and robust for different retardation time. (c) 2022 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:406 / 430
页数:25
相关论文
共 50 条
  • [1] A weak Galerkin finite element method for the Kelvin-Voigt viscoelastic fluid flow model
    Duan, Mengmen
    Yang, Yan
    Feng, Minfu
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 406 - 430
  • [2] A defect correction weak Galerkin finite element method for the Kelvin-Voigt viscoelastic fluid flow model
    Duan, Mengmeng
    Yang, Yan
    Feng, Minfu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [3] Fully discrete finite element error analysis of a discontinuous Galerkin method for the Kelvin-Voigt viscoelastic fluid model
    Bajpai, Saumya
    Goswami, Deepjyoti
    Ray, Kallol
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 130 : 69 - 97
  • [4] A priori error estimates of fully discrete finite element Galerkin method for Kelvin-Voigt viscoelastic fluid flow model
    Bajpai, Saumya
    Pany, Ambit K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (12) : 3872 - 3895
  • [5] Asymptotic behavior and finite element error estimates of Kelvin-Voigt viscoelastic fluid flow model
    Kundu, Sudeep
    Bajpai, Saumya
    Pani, Amiya K.
    NUMERICAL ALGORITHMS, 2017, 75 (03) : 619 - 653
  • [6] A globally divergence-free weak Galerkin finite element method with IMEX-SAV scheme for the Kelvin-Voigt viscoelastic fluid flow model with high Reynolds number
    Duan, Mengmeng
    Ma, Qiang
    Feng, Minfu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [7] Stabilization of Kelvin-Voigt viscoelastic fluid flow model
    Kundu, Sudeep
    Pani, Amiya K.
    APPLICABLE ANALYSIS, 2019, 98 (12) : 2284 - 2307
  • [8] Stability and convergence analysis of stabilized finite element method for the Kelvin-Voigt viscoelastic fluid flow model
    Zhang, Tong
    Duan, Mengmeng
    NUMERICAL ALGORITHMS, 2021, 87 (03) : 1201 - 1228
  • [9] BACKWARD EULER SCHEMES FOR THE KELVIN-VOIGT VISCOELASTIC FLUID FLOW MODEL
    Pany, Ambit K.
    Paikray, Susanta K.
    Padhy, Sudarsan
    Pani, Amiya K.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2017, 14 (01) : 126 - 151
  • [10] Asymptotic behavior and finite element error estimates of Kelvin-Voigt viscoelastic fluid flow model
    Sudeep Kundu
    Saumya Bajpai
    Amiya K. Pani
    Numerical Algorithms, 2017, 75 : 619 - 653