Wiener amalgam spaces of quasianalytic ultradistributions

被引:1
作者
Dimovski, Pavel [1 ]
Prangoski, Bojan [2 ]
机构
[1] Ss Cyril & Methodius Univ Skopje, Fac Technol & Met, Ruger Boskovic 16, Skopje 1000, North Macedonia
[2] Ss Cyril & Methodius Univ Skopje, Fac Mech Engn, Karpos 2 Bb, Skopje 1000, North Macedonia
关键词
Wiener amalgam spaces; Modulation spaces; Gelfand-Shilov ultradistributions; Translation and modulation invariant Banach spaces; Uniformly concentrated partitions of unity; Bounded uniform partitions of unity; BANACH-SPACES; PSEUDODIFFERENTIAL-OPERATORS; MODULATION; DISTRIBUTIONS; TRANSFORM; ALGEBRAS;
D O I
10.1016/j.jmaa.2022.126847
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define Wiener amalgam spaces of (quasi)analytic ultradistributions whose local components belong to a general class of translation and modulation invariant Banach spaces of ultradistributions and their global components are either weighted L-p or weighted C-0 spaces. We provide a discrete characterisation via so called uniformly concentrated partitions of unity. Finally, we study the complex interpolation method and we identify the strong duals for most of these Wiener amalgam spaces. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 42 条
[1]   Liftings for ultra-modulation spaces, and one-parameter groups of Gevrey-type pseudo-differential operators [J].
Abdeljawad, Ahmed ;
Coriasco, Sandro ;
Toft, Joachim .
ANALYSIS AND APPLICATIONS, 2020, 18 (04) :523-583
[2]  
Benyi A., 2020, Modulation Spaces. With Applications to Pseudodifferential Operators and Nonlinear Schrdinger Equations
[3]  
Bergh J., 1976, Interpolation spaces. An introduction
[4]   BANACH-SPACES OF DISTRIBUTIONS HAVING 2 MODULE STRUCTURES [J].
BRAUN, W ;
FEICHTINGER, HG .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 51 (02) :174-212
[5]  
Carmichael R.D., 2007, Boundary Values and Convolution in Ultradistribution Spaces
[6]  
Cordero E., 2020, Time-Frequency Analysis of Operators
[7]  
Cordero E, 2019, J FOURIER ANAL APPL, V25, P1927, DOI 10.1007/s00041-018-09651-z
[8]   Factorization in Denjoy-Carleman classes associated to representations of (Rd, +) [J].
Debrouwere, Andreas ;
Prangoski, Bojan ;
Vindas, Jasson .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (03)
[9]   The nuclearity of Gelfand-Shilov spaces and kernel theorems [J].
Debrouwere, Andreas ;
Neyt, Lenny ;
Vindas, Jasson .
COLLECTANEA MATHEMATICA, 2021, 72 (01) :203-227
[10]   Approximation property and nuclearity on mixed-norm Lp, modulation and Wiener amalgam spaces [J].
Delgado, J. ;
Ruzhansky, M. ;
Wang, B. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 94 :391-408