Normalized solutions of quasilinear Schr?dinger equations with saturable nonlinearity

被引:3
作者
Zhang, Yu [1 ]
Sun, Juntao [1 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear Schr?dinger equation; Normalized solutions; Saturable nonlinearity;
D O I
10.1016/j.aml.2022.108531
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate normalized solutions to quasilinear Schrodinger equations with saturable nonlinearity: {- increment u - u increment (u2) + lambda u = mu g(x)+u2 integral 1+g(x)+u2 u in RN, RN u2dx = c > 0, where N >= 2, lambda is an element of R, mu > 0, and g is a bounded function in RN. We prove the existence of normalized solutions for the above problem by means of variational methods.(c) 2022 Published by Elsevier Ltd.
引用
收藏
页数:7
相关论文
共 12 条
[1]   Sharp Gagliardo-Nirenberg Inequalities via p-Laplacian Type Equations [J].
Agueh, Martial .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (4-5) :457-472
[2]   NONLINEAR ELECTROMAGNETIC-SPIN WAVES [J].
BASS, FG ;
NASONOV, NN .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 189 (04) :165-223
[3]   Stability and instability results for standing waves of quasi-linear Schrodinger equations [J].
Colin, Mathieu ;
Jeanjean, Louis ;
Squassina, Marco .
NONLINEARITY, 2010, 23 (06) :1353-1385
[4]   Two-dimensional optical lattice solitons [J].
Efremidis, NK ;
Hudock, J ;
Christodoulides, DN ;
Fleischer, JW ;
Cohen, O ;
Segev, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (21)
[5]   Sharp nonexistence results of prescribed L2-norm solutions for some class of Schrodinger-Poisson and quasi-linear equations [J].
Jeanjean, Louis ;
Luo, Tingjian .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04) :937-954
[6]  
Li HW, 2021, Arxiv, DOI [arXiv:2101.07574, 10.48550/arXiv.2101.07574, DOI 10.48550/ARXIV.2101.07574]
[7]   MULTIPLE POSITIVE SOLUTIONS OF SATURABLE NONLINEAR SCHRODINGER EQUATIONS WITH INTENSITY FUNCTIONS [J].
Lin, Tai-Chia ;
Wu, Tsung-Fang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) :2165-2187
[8]   Orbital stability and energy estimate of ground states of saturable nonlinear Schrodinger equations with intensity functions in R2 [J].
Lin, Tai-Chia ;
Wang, Xiaoming ;
Wang, Zhi-Qiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (08) :4750-4786
[9]   Ground states of nonlinear Schrodinger systems with saturable nonlinearity in R2 for two counterpropagating beams [J].
Lin, Tai-Chia ;
Belic, Milivoj R. ;
Petrovic, Milan S. ;
Chen, Goong .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (01)
[10]   On the existence of soliton solutions to quasilinear Schrodinger equations [J].
Poppenberg, M ;
Schmitt, K ;
Wang, ZQ .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2002, 14 (03) :329-344