NEW GENERAL DECAY RESULTS FOR A MULTI-DIMENSIONAL BRESSE SYSTEM WITH VISCOELASTIC BOUNDARY CONDITIONS

被引:0
作者
Feng, Baowei [1 ]
Soufyane, Abdelaziz [2 ]
Afilal, Mounir [3 ]
机构
[1] Southwestern Univ Finance & Econ, Dept Math, Chengdu 611130, Peoples R China
[2] Univ Sharjah PO, Coll Sci, Dept Math, POB 27272, Sharjah, U Arab Emirates
[3] Univ Cadi Ayyad, Fac Polydisciplinaire Safi, Dept Math Informat, Marrakech, Morocco
关键词
  Bresse system; Timoshenko; viscoelastic damping; general decay; convexity; NONLINEAR-WAVE EQUATION; GLOBAL EXISTENCE; KIRCHHOFF TYPE; UNIFORM DECAY; STABILITY; RATES;
D O I
10.3934/mcrf.2022050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a multi-dimensional Bresse with memory type boundary conditions. By assuming minimal conditions on the resolvent kernel, we establish an optimal explicit and general energy decay result. This result is new and substantially improves earlier results in the literature.
引用
收藏
页码:1577 / 1596
页数:20
相关论文
共 35 条
  • [1] Stability results of a distributed problem involving Bresse system with history and/or Cattaneo law under fully Dirichlet or mixed boundary conditions
    Abdallah, Farah
    Ghader, Mouhammad
    Wehbe, Ali
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (05) : 1876 - 1907
  • [2] On the stability of Bresse system with one discontinuous local internal Kelvin-Voigt damping on the axial force
    Akil, Mohammad
    Badawi, Haidar
    Nicaise, Serge
    Wehbe, Ali
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [3] THE INFLUENCE OF THE PHYSICAL COEFFICIENTS OF A BRESSE SYSTEM WITH ONE SINGULAR LOCAL VISCOUS DAMPING IN THE LONGITUDINAL DISPLACEMENT ON ITS STABILIZATION
    Akil, Mohammad
    Badawi, Haidar
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (06): : 1903 - 1928
  • [4] Stability results of coupled wave models with locally memory in a past history framework via nonsmooth coefficients on the interface
    Akil, Mohammad
    Badawi, Haidar
    Nicaise, Serge
    Wehbe, Ali
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 6950 - 6981
  • [5] Stability and optimality of decay rate for a weakly dissipative Bresse system
    Alves, M. O.
    Fatori, L. H.
    Jorge Silva, M. A.
    Monteiro, R. N.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (05) : 898 - 908
  • [6] Arnold V. I., 1989, GRAD TEXTS MATH, V60, DOI 10.1007/978-1-4757-2063-1
  • [7] WELL-POSEDENESS AND ENERGY DECAY OF SOLUTIONS TO A BRESSE SYSTEM WITH A BOUNDARY DISSIPATION OF FRACTIONAL DERIVATIVE TYPE
    Benaissa, Abbes
    Kasmi, Abderrahmane
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (10): : 4361 - 4395
  • [8] Bresse J.A.C., 2013, COURS MECANIQUE APPL, P1865
  • [9] Cavalcanti MM, 2005, DIFFER INTEGRAL EQU, V18, P583
  • [10] Existence and uniform decay of solutions of a degenerate equation with nonlinear boundary damping and boundary memory source term
    Cavalcanti, MM
    Cavalcanti, VND
    Prates, JS
    Soriano, JA
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (03) : 281 - 294