A Fuzzy Lyapunov Function Approach for Fault Estimation of T-S Fuzzy Fractional-Order Systems Based on Unknown Input Observer

被引:39
作者
Mu, Yunfei [1 ]
Zhang, Huaguang [1 ,2 ]
Gao, Zhiyun [1 ]
Zhang, Juan [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Liaoning, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2023年 / 53卷 / 02期
基金
中国国家自然科学基金;
关键词
Iron; Fuzzy systems; Lyapunov methods; Observers; Mathematical models; Estimation; Fault diagnosis; Fault estimation (FE); fractional-order (FO) systems; FO unknown input observer (FOUIO); fuzzy Lyapunov functions; T-S fuzzy method; DESIGN; STABILIZATION; STABILITY; ACTUATOR;
D O I
10.1109/TSMC.2022.3196502
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article discusses the fault estimation (FE) problem of nonlinear fractional-order (FO) systems subject to faults and unknown inputs through the T-S fuzzy approach. A novel fuzzy FO unknown input observer is well synthesized to not only achieve the desired FE but also decouple the unknown input in contrast to the traditional integer-order observer design technique. It is worth pointing out that the provided FE scheme can reconstruct the fault signal appearing in both input and output equations simultaneously. Furthermore, by resorting to linear matrix inequalities, the stability criteria of observation error dynamics are first formulated based on general quadratic Lyapunov functions, which are further extended via fuzzy Lyapunov functions containing the information of membership functions. Finally, the performance of theoretical results is verified through two elaborate examples.
引用
收藏
页码:1246 / 1255
页数:10
相关论文
共 48 条
[1]   Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems [J].
Boroujeni, Elham Amini ;
Momeni, Hamid Reza .
SIGNAL PROCESSING, 2012, 92 (10) :2365-2370
[2]   Quantized Fuzzy Output Feedback H∞ Control for Nonlinear Systems With Adjustment of Dynamic Parameters [J].
Chang, Xiao-Heng ;
Yang, Can ;
Xiong, Jun .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (10) :2005-2015
[3]   Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems [J].
Duarte-Mermoud, Manuel A. ;
Aguila-Camacho, Norelys ;
Gallegos, Javier A. ;
Castro-Linares, Rafael .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) :650-659
[4]   A Fuzzy Lyapunov Function Method to Stability Analysis of Fractional-Order T-S Fuzzy Systems [J].
Fan, Xiaofei ;
Wang, Zhanshan .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (07) :2769-2776
[5]   Dissipativity-Based Fault Detection for Uncertain Switched Fuzzy Systems With Unmeasurable Premise Variables [J].
Han, Jian ;
Zhang, Huaguang ;
Liu, Xiuhua ;
Wei, Xinjiang .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (12) :2421-2432
[6]   Fractional-order adaptive fault-tolerant control for a class of general nonlinear systems [J].
Hu, Xinrui ;
Song, Qi ;
Ge, Meng ;
Li, Runmei .
NONLINEAR DYNAMICS, 2020, 101 (01) :379-392
[7]   Sensor fault estimation for fractional-order descriptor one-sided Lipschitz systems [J].
Jmal, Assaad ;
Naifar, Omar ;
Ben Makhlouf, Abdellatif ;
Derbel, Nabil ;
Hammami, Mohamed Ali .
NONLINEAR DYNAMICS, 2018, 91 (03) :1713-1722
[8]   Sensor fault diagnosis in fractional-order singular systems using unknown input observer [J].
Komachali, Fateme Pourdadashi ;
Shafiee, Masoud .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (01) :116-132
[9]   Design of unknown input fractional order proportional-integral observer for fractional order singular systems with application to actuator fault diagnosis [J].
Komachali, Fateme Pourdadashi ;
Shafiee, Masoud ;
Darouach, Mohamed .
IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (14) :2163-2172
[10]   Observer design for a class of nonlinear fractional-order systems with unknown input [J].
Kong, Shulan ;
Saif, Mehrdad ;
Liu, Bing .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (13) :5503-5518