An improved spatial temporal graph convolutional network for robust skeleton-based action recognition

被引:15
|
作者
Xing, Yuling [1 ]
Zhu, Jia [2 ]
Li, Yu [1 ]
Huang, Jin [1 ]
Song, Jinlong [1 ]
机构
[1] South China Normal Univ, 55 Zhongshan Ave West, Guangzhou, Peoples R China
[2] Zhejiang Normal Univ, Key Lab Intelligent Educ Technol & Applicat Zheji, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; Adaptive graph; Multi-scale; Occlusion and noise;
D O I
10.1007/s10489-022-03589-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeleton-based action recognition methods using complete human skeletons have achieved remarkable performance, but the performance of these methods could significantly deteriorate when critical joints or frames of the skeleton sequence are occluded or disrupted. However, the acquisition of incomplete and noisy human skeletons is inevitable in realistic environments. In order to strengthen the robustness of action recognition model, we propose an Improved Spatial Temporal Graph Convolutional Network (IST-GCN) model, including three modules, namely Multi-dimension Adaptive Graph Convolutional Network (Md-AGCN), Enhanced Attention Mechanism (EAM) and Multi-Scale Temporal Convolutional Network (MS-TCN). Specifically, the Md-AGCN module can first adaptively adjust the graph structure according to different layers and the spatial dimension, temporal dimension, and channel dimension of different action samples to establish corresponding connections for long-range joints with dependencies. Then, the EAM module can focus on important information based on spatial domain, temporal domain and channel to further strengthen the dependencies between important joints. Finally, the MS-TCN module is used to enlarge the receptive field to extract more latent temporal dependencies. The comprehensive experiments on NTU-RGB+D and NTU-RGB+D 120 datasets demonstrate that our approach possesses outstanding performance in terms of both accuracy and robustness when skeleton samples are incomplete and noisy compared with the state-of-the-art (SOTA) approach. Moreover, the parameters and computational complexity of our model are far less than those of the existing approaches.
引用
收藏
页码:4592 / 4608
页数:17
相关论文
共 50 条
  • [21] Feature reconstruction graph convolutional network for skeleton-based action recognition
    Huang, Junhao
    Wang, Ziming
    Peng, Jian
    Huang, Feihu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [22] Scale Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
    Wang X.
    Zhong Y.
    Jin L.
    Xiao Y.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2022, 55 (03): : 306 - 312
  • [23] Pyramidal Graph Convolutional Network for Skeleton-Based Human Action Recognition
    Li, Fanjia
    Zhu, Aichun
    Liu, Zhongyu
    Huo, Yu
    Xu, Yonggang
    Hua, Gang
    IEEE SENSORS JOURNAL, 2021, 21 (14) : 16183 - 16191
  • [24] Cross-Scale Spatial Refinement Graph Convolutional Network for Skeleton-Based Action Recognition
    Chengyuan Ke
    Sheng Liu
    Zhenghao Ke
    Yuan Feng
    Shengyong Chen
    International Journal of Computational Intelligence Systems, 18 (1)
  • [25] Multi-scale spatial–temporal convolutional neural network for skeleton-based action recognition
    Qin Cheng
    Jun Cheng
    Ziliang Ren
    Qieshi Zhang
    Jianming Liu
    Pattern Analysis and Applications, 2023, 26 (3) : 1303 - 1315
  • [26] Multi-Scale Spatial Temporal Graph Neural Network for Skeleton-Based Action Recognition
    Feng, Dong
    Wu, ZhongCheng
    Zhang, Jun
    Ren, TingTing
    IEEE ACCESS, 2021, 9 : 58256 - 58265
  • [27] Multi-temporal scale aggregation refinement graph convolutional network for skeleton-based action recognition
    Li, Xuanfeng
    Lu, Jian
    Zhou, Jian
    Liu, Wei
    Zhang, Kaibing
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2024, 35 (01)
  • [28] Attention module-based spatial-temporal graph convolutional networks for skeleton-based action recognition
    Kong, Yinghui
    Li, Li
    Zhang, Ke
    Ni, Qiang
    Han, Jungong
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (04)
  • [29] Independent Dual Graph Attention Convolutional Network for Skeleton-Based Action Recognition
    Huo, Jinze
    Cai, Haibin
    Meng, Qinggang
    NEUROCOMPUTING, 2024, 583
  • [30] Spatial-temporal graph attention networks for skeleton-based action recognition
    Huang, Qingqing
    Zhou, Fengyu
    He, Jiakai
    Zhao, Yang
    Qin, Runze
    JOURNAL OF ELECTRONIC IMAGING, 2020, 29 (05)