An improved spatial temporal graph convolutional network for robust skeleton-based action recognition

被引:15
|
作者
Xing, Yuling [1 ]
Zhu, Jia [2 ]
Li, Yu [1 ]
Huang, Jin [1 ]
Song, Jinlong [1 ]
机构
[1] South China Normal Univ, 55 Zhongshan Ave West, Guangzhou, Peoples R China
[2] Zhejiang Normal Univ, Key Lab Intelligent Educ Technol & Applicat Zheji, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; Adaptive graph; Multi-scale; Occlusion and noise;
D O I
10.1007/s10489-022-03589-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeleton-based action recognition methods using complete human skeletons have achieved remarkable performance, but the performance of these methods could significantly deteriorate when critical joints or frames of the skeleton sequence are occluded or disrupted. However, the acquisition of incomplete and noisy human skeletons is inevitable in realistic environments. In order to strengthen the robustness of action recognition model, we propose an Improved Spatial Temporal Graph Convolutional Network (IST-GCN) model, including three modules, namely Multi-dimension Adaptive Graph Convolutional Network (Md-AGCN), Enhanced Attention Mechanism (EAM) and Multi-Scale Temporal Convolutional Network (MS-TCN). Specifically, the Md-AGCN module can first adaptively adjust the graph structure according to different layers and the spatial dimension, temporal dimension, and channel dimension of different action samples to establish corresponding connections for long-range joints with dependencies. Then, the EAM module can focus on important information based on spatial domain, temporal domain and channel to further strengthen the dependencies between important joints. Finally, the MS-TCN module is used to enlarge the receptive field to extract more latent temporal dependencies. The comprehensive experiments on NTU-RGB+D and NTU-RGB+D 120 datasets demonstrate that our approach possesses outstanding performance in terms of both accuracy and robustness when skeleton samples are incomplete and noisy compared with the state-of-the-art (SOTA) approach. Moreover, the parameters and computational complexity of our model are far less than those of the existing approaches.
引用
收藏
页码:4592 / 4608
页数:17
相关论文
共 50 条
  • [1] An improved spatial temporal graph convolutional network for robust skeleton-based action recognition
    Yuling Xing
    Jia Zhu
    Yu Li
    Jin Huang
    Jinlong Song
    Applied Intelligence, 2023, 53 : 4592 - 4608
  • [2] Spatial Graph Convolutional and Temporal Involution Network for Skeleton-based Action Recognition
    Wan, Huifan
    Pan, Guanghui
    Chen, Yu
    Ding, Danni
    Zou, Maoyang
    PROCEEDINGS OF ACM TURING AWARD CELEBRATION CONFERENCE, ACM TURC 2021, 2021, : 204 - 209
  • [3] Spatial-Temporal Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
    Hang, Rui
    Li, MinXian
    COMPUTER VISION - ACCV 2022, PT IV, 2023, 13844 : 172 - 188
  • [4] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Zhu, Qilin
    Deng, Hongmin
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17796 - 17808
  • [5] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Qilin Zhu
    Hongmin Deng
    Applied Intelligence, 2023, 53 : 17796 - 17808
  • [6] Richly Activated Graph Convolutional Network for Robust Skeleton-Based Action Recognition
    Song, Yi-Fan
    Zhang, Zhang
    Shan, Caifeng
    Wang, Liang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) : 1915 - 1925
  • [7] Temporal Receptive Field Graph Convolutional Network for Skeleton-based Action Recognition
    Zhang, Qingqi
    Wu, Ren
    Nakata, Mitsuru
    Ge, Qi-Wei
    2024 INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS, AND COMMUNICATIONS, ITC-CSCC 2024, 2024,
  • [8] Spatial–Temporal gated graph attention network for skeleton-based action recognition
    Mrugendrasinh Rahevar
    Amit Ganatra
    Pattern Analysis and Applications, 2023, 26 (3) : 929 - 939
  • [9] Hierarchical Graph Convolutional Network for Skeleton-Based Action Recognition
    Huang, Linjiang
    Huang, Yan
    Ouyang, Wanli
    Wang, Liang
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 93 - 102
  • [10] Feedback Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Hao
    Yan, Dan
    Zhang, Li
    Sun, Yunda
    Li, Dong
    Maybank, Stephen J.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 164 - 175