Development of features for blade rubbing defect classification in machine learning

被引:1
|
作者
Park, Dong Hee [1 ]
Lee, Jeong Jun [1 ]
Cheong, Deok Yeong [1 ]
Eom, Ye Jun [1 ]
Kim, Seon Hwa [2 ]
Choi, Byeong Keun [1 ]
机构
[1] Gyeongsang Natl Univ, Dept Energy & Mech Engn, 2 Tongyeonghaean Ro, Tongyeong Si 53064, South Korea
[2] Korea Energy Technol Grp, 17 Techno,4 Ro, Daejeon, South Korea
关键词
Condition diagnosis; Fault feature; Phase of vibration; Machine learning; Condition monitoring; Fault detection; Blade rubbing; PREVENTIVE MAINTENANCE; VIBRATION;
D O I
10.1007/s12206-023-1201-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study has developed new features necessary for condition monitoring and diagnosis of rotating machinery. These features are developed using the phase change of vibration signal, which is characteristic of blade rubbing fault. These developed features are intended to identify the fault's correct condition and severity of the rotating machinery. The difference between normal and blade rubbing fault was compared through experiments. The experimental model was produced to simulate a blade rubbing fault. The data were acquired through the experimental model and calculated using the developed features. Fault detection was confirmed by using genetic algorithm and machine learning that failure detection was possible using the developed features, it is expected that such study can evaluate the health of the rotating machinery.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [21] Deep Learning vs. Bag of Features in Machine Learning for Image Classification
    Loussaief, Sehla
    Abdelkrim, Afef
    2018 INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND ELECTRICAL TECHNOLOGIES (IC_ASET), 2017, : 6 - 10
  • [22] Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis
    Arcos Jimenez, Alfredo
    Garcia Marquez, Fausto Pedro
    Borja Moraleda, Victoria
    Gomez Munoz, Carlos Quiterio
    RENEWABLE ENERGY, 2019, 132 : 1034 - 1048
  • [23] Redistribution Layer Defect Classification Using Computer Vision Techniques And Machine Learning
    Dangayach, Sachin
    Lianto, Prayudi
    Mishra, Satwik Swarup
    2020 IEEE 22ND ELECTRONICS PACKAGING TECHNOLOGY CONFERENCE (EPTC), 2020, : 237 - 241
  • [24] Machine learning based approach for automatic defect detection and classification in adhesive joints
    Smagulova, Damira
    Samaitis, Vykintas
    Jasiuniene, Elena
    NDT & E INTERNATIONAL, 2024, 148
  • [25] Observational and experimental insights into machine learning-based defect classification in wafers
    Taha, Kamal
    JOURNAL OF INTELLIGENT MANUFACTURING, 2025,
  • [26] Automated defect detection and classification in ashlar masonry walls using machine learning
    Valero, Enrique
    Forster, Alan
    Bosche, Frederic
    Hyslop, Ewan
    Wilson, Lyn
    Turmel, Aurelie
    AUTOMATION IN CONSTRUCTION, 2019, 106
  • [27] Multiresolution classification of turbulence features in image data through machine learning
    Pulido, Jesus
    da Silva, Ricardo Dutra
    Livescu, Daniel
    Hamann, Bernd
    COMPUTERS & FLUIDS, 2021, 214
  • [28] Classification of deep image features of lentil varieties with machine learning techniques
    Butuner, Resul
    Cinar, Ilkay
    Taspinar, Yavuz Selim
    Kursun, Ramazan
    Calp, M. Hanefi
    Koklu, Murat
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2023, 249 (05) : 1303 - 1316
  • [29] Simulation-driven machine learning: Bearing fault classification
    Sobie, Cameron
    Freitas, Carina
    Nicolai, Mike
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 99 : 403 - 419
  • [30] Machine learning approach for the classification of corn seed using hybrid features
    Ali, Aqib
    Qadri, Salman
    Mashwani, Wali Khan
    Belhaouari, Samir Brahim
    Naeem, Samreen
    Rafique, Sidra
    Jamal, Farrukh
    Chesneau, Christophe
    Anam, Sania
    INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 2020, 23 (01) : 1110 - 1124