共 50 条
Overall reaction mechanism of photocatalytic CO2 reduction on a Re(I)-complex catalyst unit of a Ru(II)-Re(I) supramolecular photocatalyst
被引:9
作者:
Kamogawa, Kei
[1
]
Kato, Yuki
[2
]
Tamaki, Yusuke
[1
]
Noguchi, Takumi
[2
]
Nozaki, Koichi
[3
]
Nakagawa, Tatsuo
[4
]
Ishitani, Osamu
[1
,5
]
机构:
[1] Tokyo Inst Technol, Sch Sci, Dept Chem, 2-12-1-NE-2 Ookayama,Meguro Ku, Tokyo 1528550, Japan
[2] Nagoya Univ, Grad Sch Sci, Dept Phys, Nagoya 4648602, Japan
[3] Univ Toyama, Grad Sch Sci & Engn, Dept Chem, 3190 Gofuku, Toya Ma, Toyama 9308555, Japan
[4] UNISOKU Co Ltd, 2-4-3 Kasugano, Hirakata, Osaka 5730131, Japan
[5] Hiroshima Univ, Grad Sch Adv Sci & Engn, Dept Chem, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398526, Japan
基金:
日本学术振兴会;
关键词:
CARBON-DIOXIDE;
HIGHLY EFFICIENT;
ELECTRON-TRANSFER;
RHENIUM;
COMPLEXES;
SELECTIVITY;
MANGANESE;
MONOXIDE;
LIGAND;
BINUCLEAR;
D O I:
10.1039/d3sc06059d
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Rhenium(i) complexes fac-[Re-I(diimine)(CO)(3)(L)](n+) are mostly used and evaluated as photocatalysts and catalysts in both photochemical and electrochemical systems for CO2 reduction. However, the selective reduction mechanism of CO2 to CO is unclear, although numerous mechanistic studies have been reported. A Ru(ii)-Re(i) supramolecular photocatalyst with fac-[Re-I(diimine)(CO)(3){OC(O)OCH2CH2NR2}] (R = C2H4OH) as a catalyst unit (RuC2Re) exhibits very high efficiency, selectivity, and durability of CO formation in photocatalytic CO2 reduction reactions. In this work, the reaction mechanism of photocatalytic CO2 reduction using RuC2Re is fully clarified. Time-resolved IR (TR-IR) measurements using rapid-scan FT-IR spectroscopy with laser flash photolysis verify the formation of RuC2Re(COOH) with a carboxylic acid unit, i.e., fac-[Re-I(diimine)(CO)(3)(COOH)], in the photocatalytic reaction solution. Additionally, this important intermediate is detected in an actual photocatalytic reaction using steady state irradiation. Kinetics analysis of the TR-IR spectra and DFT calculations demonstrated the reaction mechanism of the conversion of the one-electron reduced species of RuC2Re with a fac-[Re-I(diimine(center dot)(-))(CO)(3){OC(O)OCH2CH2NR2}](-) unit, which was produced via the photochemical reduction of RuC2Re by 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH), to RuC2Re(COOH). The kinetics of the recovery processes of the starting complex RuC2Re from RuC2Re(COOH) accompanying the release of CO and OH- was also clarified. As a side reaction of RuC2Re(COOH), a long-lived carboxylate-ester complex with a fac-[Re-I(diimine)(CO)(3)(COOC2H4NR2)] unit, which was produced by the nucleophilic attack of TEOA to one of the carbonyl ligands of RuC2Re(CO) with a fac-[Re-I(diimine)(CO)(4)](+) unit, was formed during the photocatalytic reaction. This complex works not only as a precursor in another minor CO formation process but also as an external photosensitiser that photochemically reduces the other complexes i.e., RuC2Re, RuC2Re(COOH), and the intermediate that is reductively converted to RuC2Re(COOH).
引用
收藏
页码:2074 / 2088
页数:15
相关论文