Automated software for counting and measuring Hyalella genus using artificial intelligence

被引:2
|
作者
Pineda-Alarcon, Ludy [1 ]
Zuluaga, Maycol [2 ]
Ruiz, Santiago [2 ]
Mc Cann, David Fernandez [2 ]
Velez, Fabio [3 ]
Aguirre, Nestor [3 ]
Puerta, Yarin [3 ]
Canon, Julio [1 ]
机构
[1] Univ Antioquia, Engineer Fac, Environm Sch, Environm Management & Modeling Grp GAIA, Medellin, Colombia
[2] Univ Antioquia, Engineer Fac, Power Elect Automat & Robot Grp GEPAR, Engineer Elect, Medellin, Colombia
[3] Univ Antioquia, Engineer Fac, Environm Sch, Limnol & Environm Modeling Grp GEOLIMNA, Medellin, Colombia
关键词
Measuring protocols; Morphological traits; Image capture; Macroinvertebrates; Deep learning; WATER-QUALITY; BEHAVIORAL-RESPONSE; MACROINVERTEBRATES; BIOINDICATORS; POPULATION; AMPHIPODA; CRUSTACEA; COLOMBIA; INSECT; IMAGES;
D O I
10.1007/s11356-023-30835-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Amphipods belonging to the Hyalella genus are macroinvertebrates that inhabit aquatic environments. They are of particular interest in areas such as limnology and ecotoxicology, where data on the number of Hyalella individuals and their allometric measurements are used to assess the environmental dynamics of aquatic ecosystems. In this study, we introduce HyACS, a software tool that uses a model developed with the YOLOv3's architecture to detect individuals, and digital image processing techniques to extract morphological metrics of the Hyalella genus. The software detects body metrics of length, arc length, maximum width, eccentricity, perimeter, and area of Hyalella individuals, using basic imaging capture equipment. The performance metrics indicate that the model developed can achieve high prediction levels, with an accuracy above 90% for the correct identification of individuals. It can perform up to four times faster than traditional visual counting methods and provide precise morphological measurements of Hyalella individuals, which may improve further studies of the species populations and enhance their use as bioindicators of water quality.
引用
收藏
页码:123603 / 123615
页数:13
相关论文
共 50 条
  • [1] Automated software for counting and measuring Hyalella genus using artificial intelligence
    Ludy Pineda-Alarcón
    Maycol Zuluaga
    Santiago Ruíz
    David Fernandez Mc Cann
    Fabio Vélez
    Nestor Aguirre
    Yarin Puerta
    Julio Cañón
    Environmental Science and Pollution Research, 2023, 30 : 123603 - 123615
  • [2] Automated Identification of Dental Implants Using Artificial Intelligence
    da Mata Santos, Rafael Pereira
    Vieira Oliveira Prado, Higor Eduardo
    Aranha Neto, Idalisio Soares
    Alves de Oliveira, Guilherme Augusto
    Vespasiano Silva, Amaro Ilidio
    Zenobio, Elton Goncalves
    Manzi, Flavio Ricardo
    INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS, 2021, 36 (05) : 918 - 923
  • [3] Automated char classification using image analysis and artificial intelligence
    Alpana
    Chand, Satish
    Mohapatra, Subrajeet
    Mishra, Vivek
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2021, 28 (02) : 235 - 248
  • [4] System of Counting Green Oranges Directly from Trees Using Artificial Intelligence
    Gremes, Matheus Felipe
    Fermo, Igor Rossi
    Krummenauer, Rafael
    Flores, Franklin Cesar
    Andrade, Cid Marcos Goncalves
    Lima, Oswaldo Curty da Motta
    AGRIENGINEERING, 2023, 5 (04): : 1813 - 1831
  • [5] Automated pig counting using deep learning
    Tian, Mengxiao
    Guo, Hao
    Chen, Hong
    Wang, Qing
    Long, Chengjiang
    Ma, Yuhao
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 163
  • [6] Harnessing Artificial Intelligence for Automated Diagnosis
    Zachariadis, Christos B.
    Leligou, Helen C.
    INFORMATION, 2024, 15 (06)
  • [7] Exploring facial cues: automated deception detection using artificial intelligence
    Dinges L.
    Fiedler M.-A.
    Al-Hamadi A.
    Hempel T.
    Abdelrahman A.
    Weimann J.
    Bershadskyy D.
    Steiner J.
    Neural Computing and Applications, 2024, 36 (24) : 14857 - 14883
  • [8] Artificial intelligence in orthodontics Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network
    Kunz, Felix
    Stellzig-Eisenhauer, Angelika
    Zeman, Florian
    Boldt, Julian
    JOURNAL OF OROFACIAL ORTHOPEDICS-FORTSCHRITTE DER KIEFERORTHOPADIE, 2020, 81 (01): : 52 - 68
  • [9] A new resource on artificial intelligence powered computer automated detection software products for tuberculosis programmes and implementers
    Qin, Zhi Zhen
    Naheyan, Tasneem
    Ruhwald, Morten
    Denkinger, Claudia M.
    Gelaw, Sifrash
    Nash, Madlen
    Creswell, Jacob
    Kik, Sandra Vivian
    TUBERCULOSIS, 2021, 127
  • [10] Automated Analysis of Sleep Study Parameters Using Signal Processing and Artificial Intelligence
    Sohaib, Muhammad
    Ghaffar, Ayesha
    Shin, Jungpil
    Hasan, Md Junayed
    Suleman, Muhammad Taseer
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (20)