An Improved Spectral Numerical Mode Matching Method for Simulating Fiber Bragg Gratings

被引:1
|
作者
Wu, Xue Liang [1 ]
Liu, Jie [2 ,3 ]
Chen, Jin-Hui [1 ]
Liu, Qing Huo [1 ,3 ,4 ]
机构
[1] Xiamen Univ, Inst Electromagnet & Acoust, Xiamen 361005, Peoples R China
[2] Tang Shan Technol, Ningbo, Peoples R China
[3] Eastern Inst Technol, Ningbo 315200, Peoples R China
[4] Duke Univ, Dept Elect & Comp Engn, Durham, NC 90291 USA
基金
中国国家自然科学基金;
关键词
Fiber gratings; Perturbation methods; Mathematical models; Permittivity; Refractive index; Optical fiber theory; Reflection; Absorbing boundary condition (ABC); fiber Bragg gratings (FBGs); spectral numerical mode matching (SNMM); ELECTROMAGNETIC-WAVES; EFFICIENT; PROPAGATION; ALGORITHM; MEDIA;
D O I
10.1109/TMTT.2023.3330701
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An improved spectral numerical mode matching (SNMM) method is applied for the first time to simulate fiber Bragg gratings (FBGs). Based on using the relative permittivity perturbation as the source, the new SNMM is constructed to correlate the total electromagnetic (EM) field with the excitation (expansion) coefficients directly from Maxwell's equations instead of forward-and backward-propagating waves in the coupled mode theory. This work provides the EM field by mode excitation based on the corresponding eigenmodes according to the perturbation approximation. In the new SNMM method, the spectral element method (SEM) is used to solve the eigenvalue problem numerically, and the excitation coefficient functions are obtained by the Runge-Kutta method. Several numerical results demonstrate the validity, accuracy, and advantages of the proposed method by comparing it with the commercial software COMSOL and the transfer matrix method (TMM).
引用
收藏
页码:3334 / 3344
页数:11
相关论文
共 50 条
  • [1] The Spectral Numerical Mode Matching Method for Simulating Concentric All-Fiber Sensor Structures With Metallic Films
    Wu, Xue Liang
    Liu, Jie
    Liu, Qing Huo
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (04) : 3789 - 3794
  • [2] Mode selective fiber Bragg gratings
    Thomas, Jens U.
    Voigtlaender, Christian
    Nolte, Stefan
    Tuennermann, Andreas
    Jovanovic, Nemanja
    Marshall, Graham D.
    Withford, Michael J.
    Steel, Michael
    FRONTIERS IN ULTRAFAST OPTICS: BIOMEDICAL, SCIENTIFIC, AND INDUSTRIAL APPLICATIONS X, 2010, 7589
  • [3] Numerical methods for fiber Bragg gratings
    Dionísio, RP
    Lima, MJ
    da Rocha, JRF
    Pinto, JL
    Teíxeira, AJ
    ICTON 2003: 5TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, VOL 2, PROCEEDINGS, 2003, : 185 - 188
  • [4] Spectral Numerical Mode Matching Method for Metasurfaces
    Liu, Jie
    Cai, Guoxiong
    Yao, Jin
    Liu, Na
    Liu, Qing Huo
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2019, 67 (07) : 2629 - 2639
  • [5] NUMERICAL ANALYSIS OF APODIZED FIBER BRAGG GRATINGS USING COUPLED MODE THEORY
    Sun, N. -H
    Liau, J. -J
    Kiang, Y. -W
    Lin, S. -C
    Ro, R. -Y
    Chiang, J. -S
    Chang, H. -W
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2009, 99 : 289 - 306
  • [6] Programmable fiber Bragg gratings for spectral CDMA
    Boffi, P.
    Piccinin, D.
    Parolari, P.
    Aldeghi, R.
    Martinelli, M.
    2000, IEEE, Piscataway
  • [7] Mode couplings in superstructure fiber Bragg gratings
    Zhang, AP
    Guan, BO
    Tao, XM
    Tam, HY
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (04) : 489 - 491
  • [8] Spectral interference fringes in chirped large-mode-area fiber Bragg gratings
    Poozesh, Reza
    Madanipour, Khosro
    Vatani, Vahid
    OPTICAL FIBER TECHNOLOGY, 2016, 31 : 134 - 137
  • [9] Numerical reconstruction stability of fiber Bragg gratings
    Belai, O. V.
    Podivilov, E. V.
    Frumin, L. L.
    Shapiro, D. A.
    OPTICS AND SPECTROSCOPY, 2008, 105 (01) : 103 - 110
  • [10] Numerical reconstruction stability of fiber Bragg gratings
    O. V. Belai
    E. V. Podivilov
    L. L. Frumin
    D. A. Shapiro
    Optics and Spectroscopy, 2008, 105