A simple and efficient preprocessing step for convex hull problem

被引:0
作者
Heydari, Mohammad [1 ]
Khalifeh, Ashkan [2 ]
Rathour, Laxmi [3 ]
机构
[1] Univ Isfahan, Dept Comp Sci, Khansar Campus, Esfahan, Iran
[2] Yazd Univ, Dept Stat, Yazd, Iran
[3] Natl Inst Technol, Dept Math, Chaltlang Aizawl 796012, Mizoram, India
关键词
Algorithm; convex hull; recursive; ALGORITHM;
D O I
10.1142/S179383092350091X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a recursive algorithm as a preprocessing step to find the convex hull of n random points uniformly distributed in the plane. For such a set of points, it is shown that eliminating all but O(log n) of points can derive the same convex hull as the input set. Finally it will be shown that the running time of the algorithm is O(n).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] LINEAR ALGORITHM FOR FINDING THE CONVEX-HULL OF A SIMPLE POLYGON
    MCCALLUM, D
    AVIS, D
    INFORMATION PROCESSING LETTERS, 1979, 9 (05) : 201 - 206
  • [32] NUMERICAL STABILITY OF A CONVEX-HULL ALGORITHM FOR SIMPLE POLYGONS
    JAROMCZYK, JW
    WASILKOWSKI, GW
    ALGORITHMICA, 1993, 10 (06) : 457 - 472
  • [33] Introducing a simple convex hull method to calibrate diffusion coefficients in Lagrangian particle models
    Song, Yang
    Fujisaki-Manome, Ayumi
    Barker, Christopher H.
    Macfadyen, Amy
    Titze, Dan
    Kessler, James
    Wang, Jia
    OCEAN ENGINEERING, 2025, 316
  • [34] Convex hull of points lying on lines in o(n log n) time after preprocessing
    Ezra, Esther
    Mulzer, Wolfgang
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (04): : 417 - 434
  • [35] CHoCC: Convex Hull of Cospherical Circles and Applications to Lattices
    Wu, Yaohong
    Gupta, Ashish
    Kurzeja, Kelsey
    Rossignac, Jarek
    COMPUTER-AIDED DESIGN, 2020, 129
  • [36] Convex-Hull Algorithms: Implementation, Testing, and Experimentation
    Gamby, Ask Neve
    Katajainen, Jyrki
    ALGORITHMS, 2018, 11 (12):
  • [37] A Faster Convex-Hull Algorithm via Bucketing
    Gamby, Ask Neve
    Katajainen, Jyrki
    ANALYSIS OF EXPERIMENTAL ALGORITHMS, SEA2 2019, 2019, 11544 : 473 - 489
  • [38] A CONVEX HULL BASED ALGORITHM FOR SOLVING THE TRAVELING SALESMAN PROBLEM
    Nuriyeva, F.
    Kutucu, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (02): : 412 - 420
  • [39] THE PARALLEL 3D CONVEX HULL PROBLEM REVISITED
    Amato, Nancy M.
    Preparata, Franco P.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1992, 2 (02) : 163 - 173
  • [40] A method for solving the n-dimensional convex hull problem
    Jozwik, Adam
    PATTERN RECOGNITION LETTERS, 1983, 2 (01) : 23 - 25