Robust Depth-Aided Visual-Inertial-Wheel Odometry for Mobile Robots

被引:2
|
作者
Zhao, Xinyang [1 ]
Li, Qinghua [1 ]
Wang, Changhong [1 ]
Dou, Hexuan [1 ]
Liu, Bo [1 ]
机构
[1] Harbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China
关键词
Cameras; Estimation; Uncertainty; Odometers; Measurement uncertainty; Wheels; Odometry; Sensor fusion; simultaneous location and mapping (SLAM); visual-inertial-odometer odometry; wheeled robots; SLAM;
D O I
10.1109/TIE.2023.3323731
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article introduces visual-depth-inertial-wheel odometry (VDIWO), a robust approach for real-time localization of mobile robots in indoor and outdoor scenarios. Notably, VDIWO achieves accurate localization without relying on prior information. This approach integrates the RGB-D camera, inertial measurement unit, and odometer measurements in a tightly coupled optimization framework. First, we introduce the depth measurement model based on Gaussian mixed model to predict the depth uncertainty of feature points. Then, we propose a hybrid depth estimation method that utilizes both depth measurement fusion and multiview triangulation to estimate the depth of landmarks and simultaneously identify high-quality landmarks. Furthermore, we integrate visual reprojection with depth measurement constraints and odometer preintegration constraints into the tightly coupled optimization framework to further enhance pose estimation accuracy. We evaluate the performance of the VDIWO method using OpenLORIS datasets and real-world experiments. The results demonstrate the high accuracy and robustness of VDIWO for state estimation of mobile robots.
引用
收藏
页码:9161 / 9171
页数:11
相关论文
共 50 条
  • [41] Monocular Visual-Inertial Odometry with Wheel Encoder for Urban Vehicle
    Qiu, Yue
    Li, Yong
    THIRD INTERNATIONAL CONFERENCE ON SENSORS AND INFORMATION TECHNOLOGY, ICSI 2023, 2023, 12699
  • [42] Visual-Inertial Odometry Tightly Coupled with Wheel Encoder Adopting Robust Initialization and Online Extrinsic Calibration
    Liu, Jinxu
    Gao, Wei
    Hu, Zhanyi
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 5391 - 5397
  • [43] RD-VIO: Relative-depth-aided visual-inertial odometry for autonomous underwater vehicles
    Ding, Shuoshuo
    Ma, Teng
    Li, Ye
    Xu, Shuo
    Yang, Zhangqi
    APPLIED OCEAN RESEARCH, 2023, 134
  • [44] Insufficient environmental information indoor localization of mecanum mobile platform using wheel-visual-inertial odometry
    Lee, Chaehyun
    Hur, Seongyong
    Kim, David
    Yang, Yoseph
    Choi, Dongil
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (09) : 5007 - 5015
  • [45] Robust Neural Visual Inertial Odometry With Deep Velocity Constraint
    Gu, Pengfei
    Zhou, Pengkun
    Meng, Ziyang
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (11): : 9797 - 9804
  • [46] A sensor-centric EKF for inertial-aided visual odometry
    Kleinert, Markus
    Stilla, Uwe
    2013 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2013,
  • [47] Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight
    Sun, Ke
    Mohta, Kartik
    Pfrommer, Bernd
    Watterson, Michael
    Liu, Sikang
    Mulgaonkar, Yash
    Taylor, Camillo J.
    Kumar, Vijay
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (02): : 965 - 972
  • [48] Application of Visual Inertial Odometry for Pose Estimation of a Mobile Robot
    Lee, Boeun
    Ko, Nak Yong
    Yeom, Hong Gi
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 1063 - 1065
  • [49] Low drift visual inertial odometry with UWB aided for indoor localization
    Gao, Bo
    Lian, Baowang
    Wang, Dongjia
    Tang, Chengkai
    IET COMMUNICATIONS, 2022, 16 (10) : 1083 - 1093
  • [50] Visual-Inertial Odometry aided by Speed and Steering Angle Measurements
    Serov, Andreas
    Clemens, Joachim
    Schill, Kerstin
    2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,