Robust Depth-Aided Visual-Inertial-Wheel Odometry for Mobile Robots

被引:2
|
作者
Zhao, Xinyang [1 ]
Li, Qinghua [1 ]
Wang, Changhong [1 ]
Dou, Hexuan [1 ]
Liu, Bo [1 ]
机构
[1] Harbin Inst Technol, Space Control & Inertial Technol Res Ctr, Harbin 150001, Peoples R China
关键词
Cameras; Estimation; Uncertainty; Odometers; Measurement uncertainty; Wheels; Odometry; Sensor fusion; simultaneous location and mapping (SLAM); visual-inertial-odometer odometry; wheeled robots; SLAM;
D O I
10.1109/TIE.2023.3323731
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article introduces visual-depth-inertial-wheel odometry (VDIWO), a robust approach for real-time localization of mobile robots in indoor and outdoor scenarios. Notably, VDIWO achieves accurate localization without relying on prior information. This approach integrates the RGB-D camera, inertial measurement unit, and odometer measurements in a tightly coupled optimization framework. First, we introduce the depth measurement model based on Gaussian mixed model to predict the depth uncertainty of feature points. Then, we propose a hybrid depth estimation method that utilizes both depth measurement fusion and multiview triangulation to estimate the depth of landmarks and simultaneously identify high-quality landmarks. Furthermore, we integrate visual reprojection with depth measurement constraints and odometer preintegration constraints into the tightly coupled optimization framework to further enhance pose estimation accuracy. We evaluate the performance of the VDIWO method using OpenLORIS datasets and real-world experiments. The results demonstrate the high accuracy and robustness of VDIWO for state estimation of mobile robots.
引用
收藏
页码:9161 / 9171
页数:11
相关论文
共 50 条
  • [31] RNIN-VIO: Robust Neural Inertial Navigation Aided Visual-Inertial Odometry in Challenging Scenes
    Chen, Danpeng
    Wang, Nan
    Xu, Runsen
    Xie, Weijian
    Bao, Hujun
    Zhang, Guofeng
    2021 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR 2021), 2021, : 275 - 283
  • [32] INFORMATION FILTERING WITH SUBMAPS FOR INERTIAL AIDED VISUAL ODOMETRY
    Kleinert, M.
    Stilla, U.
    PIA15+HRIGI15 - JOINT ISPRS CONFERENCE, VOL. II, 2015, 2-3 (W4): : 87 - 94
  • [33] Lightweight Visual Odometry for Autonomous Mobile Robots
    Aladem, Mohamed
    Rawashdeh, Samir A.
    SENSORS, 2018, 18 (09)
  • [34] Radar Visual Inertial Odometry and Radar Thermal Inertial Odometry: Robust Navigation even in Challenging Visual Conditions
    Doer, Christopher
    Trommer, Gert F.
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 331 - 338
  • [35] Unsupervised Depth Completion From Visual Inertial Odometry
    Wong, Alex
    Fei, Xiaohan
    Tsuei, Stephanie
    Soatto, Stefano
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 1899 - 1906
  • [36] Robust LiDAR visual inertial odometry for dynamic scenes
    Peng, Gang
    Cao, Chong
    Chen, Bocheng
    Hu, Lu
    He, Dingxin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (09)
  • [37] Stereo Visual Inertial Odometry for Robots with Limited Computational Resources
    Bahnam, Stavrow
    Pfeiffer, Sven
    de Croon, Guido C. H. E.
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 9154 - 9159
  • [38] Survey of Research on Visual Odometry Technology for Mobile Robots
    Chen M.
    Huang L.
    Wang S.
    Zhang Y.
    Chen Z.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2024, 55 (03): : 1 - 20
  • [39] Unsupervised visual odometry method for greenhouse mobile robots
    Wu X.
    Zhou Y.
    Liu J.
    Liu Z.
    Wang C.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (10): : 163 - 174
  • [40] Stereo Visual Odometry for Mobile Robots on Uneven Terrain
    Ericson, Stefan
    Astrand, Bjorn
    WCECS 2008: ADVANCES IN ELECTRICAL AND ELECTRONICS ENGINEERING - IAENG SPECIAL EDITION OF THE WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, PROCEEDINGS, 2009, : 150 - +