Application of a Stochastic Schemata Exploiter for Multi-Objective Hyper-parameter Optimization of Machine Learning

被引:0
|
作者
Makino, Hiroya [1 ]
Kita, Eisuke [1 ]
机构
[1] Nagoya Univ, Grad Sch Informat, Nagoya, Japan
来源
REVIEW OF SOCIONETWORK STRATEGIES | 2023年 / 17卷 / 02期
关键词
AutoML; Stochastic schemata exploiter; Evolutionary algorithm; Hyper-parameter optimization; REGRESSION SHRINKAGE; SELECTION; ALGORITHM; SEARCH;
D O I
10.1007/s12626-023-00151-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Stochastic Schemata Exploiter (SSE), one of the Evolutionary Algorithms, is designed to find the optimal solution of a function. SSE extracts common schemata from individual sets with high fitness and generates individuals from the common schemata. For hyper-parameter optimization, the initialization method, the schema extraction method, and the new individual generation method, which are characteristic processes in SSE, are extended. In this paper, an SSE-based multi-objective optimization for AutoML is proposed. AutoML gives good results in terms of model accuracy. However, if only model accuracy is considered, the model may be too complex. Such complex models cannot always be allowed because of the long computation time. The proposed method maximizes the stacking model accuracy and minimizes the model complexity simultaneously. When compared with existing methods, SSE has interesting features such as fewer control parameters and faster convergence properties. The visualization method makes the optimization process transparent and helps users understand the process.
引用
收藏
页码:179 / 213
页数:35
相关论文
共 50 条
  • [31] A Learning Guided Parameter Setting for Constrained Multi-Objective Optimization
    Fan, Zhun
    Ruan, Jie
    Li, Wenji
    You, Yugen
    Cai, Xinye
    Xu, Zelin
    Yang, Zhi
    Sun, Fuzan
    Wang, Zhaojun
    Yuan, Yutong
    Li, Zhaocheng
    Zhu, Guijie
    2019 1ST INTERNATIONAL CONFERENCE ON INDUSTRIAL ARTIFICIAL INTELLIGENCE (IAI 2019), 2019,
  • [32] Robust Parameter Optimization of Multi-Objective Variables in Laser Metal Deposition Using Machine Learning
    Fukuyama R.
    Mori K.
    Satsuta T.
    Ishikawa T.
    Okuda M.
    Nakamura N.
    Senke N.
    Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2024, 42 (02): : 51 - 61
  • [33] Multi-Objective Parameter Configuration of Machine Learning Algorithms using Model-Based Optimization
    Horn, Daniel
    Bischl, Bernd
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [34] Application of machine learning methods in performance prediction and multi-objective optimization of fuel cell
    School of Energy and Power Engineering, Northeast Electric Power University, China
    Proc. Int. Conf. Power Eng., ICOPE,
  • [35] Single-objective and multi-objective optimization for variance counterbalancing in stochastic learning
    Triantali, Dimitra G.
    Parsopoulos, Konstantinos E.
    Lagaris, Isaac E.
    APPLIED SOFT COMPUTING, 2023, 142
  • [36] A novel hybrid intelligent system for multi-objective machine parameter optimization
    Raquel Redondo
    Javier Sedano
    Vicente Vera
    Beatriz Hernando
    Emilio Corchado
    Pattern Analysis and Applications, 2015, 18 : 31 - 44
  • [37] A novel hybrid intelligent system for multi-objective machine parameter optimization
    Redondo, Raquel
    Sedano, Javier
    Vera, Vicente
    Hernando, Beatriz
    Corchado, Emilio
    PATTERN ANALYSIS AND APPLICATIONS, 2015, 18 (01) : 31 - 44
  • [38] Using Machine Learning to Improve Evolutionary Multi-Objective Optimization
    Alotaibi, Rakan
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (06): : 203 - 211
  • [39] A survey on multi-objective hyperparameter optimization algorithms for machine learning
    Alejandro Morales-Hernández
    Inneke Van Nieuwenhuyse
    Sebastian Rojas Gonzalez
    Artificial Intelligence Review, 2023, 56 : 8043 - 8093
  • [40] A survey on multi-objective hyperparameter optimization algorithms for machine learning
    Morales-Hernandez, Alejandro
    Van Nieuwenhuyse, Inneke
    Gonzalez, Sebastian Rojas
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (08) : 8043 - 8093