SPGAN-DA: Semantic-Preserved Generative Adversarial Network for Domain Adaptive Remote Sensing Image Semantic Segmentation

被引:0
|
作者
Li, Yansheng [1 ]
Shi, Te [1 ]
Zhang, Yongjun [1 ]
Ma, Jiayi [2 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Hubei Luojia Lab, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Index Terms-Class distribution alignment (CDA); domain adaptive semantic segmentation; generative adversarial network (GAN); semantic-preserved generative adversarial network (SPGAN); unbiased image translation; MULTISOURCE UNSUPERVISED DOMAIN; COVARIATE SHIFT; ADAPTATION;
D O I
10.1109/TGRS.2023.3313883
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Unsupervised domain adaptation for remote sensing semantic segmentation seeks to adapt a model trained on the labeled source domain to the unlabeled target domain. One of the most promising ways is to translate images from the source domain to the target domain to align the spectral information or imaging mode by the generative adversarial network (GAN). However, source-to-target translation often brings bias in the translated images causing limited performance, as semantic information is not well considered in the translation procedure. To overcome this limitation, we present an innovative semantic-preserved generative adversarial network (SPGAN), designed to mitigate the image translation bias and then leverage the translated images as well as unlabeled target images by class distribution alignment (CDA) module to train a domain adaptive semantic segmentation model. The above two stages are coupled together to form a unified framework called SPGAN-DA. Specifically, we first conduct semantic invariant translation from source to target domain, which is achieved by introducing representation-invariant and semantic-preserved constraints to the GAN model. To further narrow the landscape layout gap between the translated and target images, CDA semantic segmentation is proposed. CDA semantic segmentation consists of two aspects. At the model input level, object discrepancy is eliminated by introducing the ClassMix operation. At the model output level, boundary enhancement is proposed to refine the performance of object boundaries. Extensive experiments on three typical remote sensing cross-domain semantic segmentation benchmarks demonstrate the effectiveness and generality of our proposed method, which competes favorably against existing state-of-the-art methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] PANet: parallel attention network for remote sensing image semantic segmentation
    Ma, Yuqi
    ISCTT 2021 - 6th International Conference on Information Science, Computer Technology and Transportation, 2022, : 414 - 417
  • [42] Multitask Semantic Boundary Awareness Network for Remote Sensing Image Segmentation
    Li, Aijin
    Jiao, Licheng
    Zhu, Hao
    Li, Lingling
    Liu, Fang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] Semi Supervised Semantic Segmentation Using Generative Adversarial Network
    Souly, Nasim
    Spampinato, Concetto
    Shah, Mubarak
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5689 - 5697
  • [44] Semantic Segmentation of Colon Gland with Conditional Generative Adversarial Network
    Mei, Liye
    Guo, Xiaopeng
    Cheng, Chaowei
    2019 9TH INTERNATIONAL CONFERENCE ON BIOSCIENCE, BIOCHEMISTRY AND BIOINFORMATICS (ICBBB 2019), 2019, : 12 - 16
  • [45] A Synthetic Generative Adversarial Network for Semantic Lung Tumor Segmentation
    Kearney, V.
    Chan, J. W.
    Haaf, S.
    Yom, S. S.
    Solberg, T.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S549 - S549
  • [46] Improving Road Semantic Segmentation Using Generative Adversarial Network
    Abdollahi, Abolfazl
    Pradhan, Biswajeet
    Sharma, Gaurav
    Maulud, Khairul Nizam Abdul
    Alamri, Abdullah
    IEEE ACCESS, 2021, 9 : 64381 - 64392
  • [47] Unsupervised Prototype-Wise Contrastive Learning for Domain Adaptive Semantic Segmentation in Remote Sensing Image
    Ma, Siteng
    Hou, Biao
    Guo, Xianpeng
    Wu, Zitong
    Li, Zhihao
    Wu, Hang
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [48] Unsupervised Adversarial Domain Adaptation Network for Semantic Segmentation
    Liu, Wei
    Su, Fulin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (11) : 1978 - 1982
  • [49] Brain Tumor Semantic Segmentation from MRI Image Using Deep Generative Adversarial Segmentation Network
    Cui, Shaoguo
    Liu, Chang
    Chen, Moyu
    Xiong, Shuyu
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (09) : 1913 - 1919
  • [50] Adaptive Multitype Contrastive Views Generation for Remote Sensing Image Semantic Segmentation
    Shi, Cheng
    Han, Peiwen
    Zhao, Minghua
    Fang, Li
    Miao, Qiguang
    Pun, Chi-Man
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63