Rational design of hollow Ti2Nb10O29 nanospheres towards High-Performance pseudocapacitive Lithium-Ion storage

被引:11
作者
Dong, Hao [1 ]
Chen, Xinyang [1 ]
Yao, Tianhao [1 ]
Ge, Qianjiao [1 ]
Chen, Shiqi [1 ]
Ma, Zhenhan [1 ]
Wang, Hongkang [1 ]
机构
[1] Xi An Jiao Tong Univ, Ctr Nanomat Renewable Energy CNRE, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Structure engineering; Hollow structure; Lithium-ion batteries; Pseudocapacitive mechanism; TITANIUM NIOBIUM OXIDE; DOPED CARBON LAYERS; ANODE MATERIALS; MICROSPHERES; NANOPARTICLES; COMPOSITE; DEPOSITION; GRAPHENE; ARRAYS;
D O I
10.1016/j.jcis.2023.08.045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ti2Nb10O29, as one of the most promising anode materials for lithium-ion batteries (LIBs), possesses excellent structural stability during lithiation/delithiation cycling and higher theoretical capacity. However, Ti2Nb10O29 faces some challenges, such as insufficient ion diffusion coefficient and poor electronic conductivity. To overcome these problems, this study investigates the effect of applying nanostructure engineering on Ti2Nb10O29 and the lithium storage behaviors. We successfully synthesized hollow Ti2Nb10O29 nanospheres (h-TNO NSs) via solvothermal method using phenolic resin nanospheres as the template. The effects of using a template or not and the annealing atmospheres on the microstructures of the as-prepared Ti2Nb10O29 are investigated. Different nanostructures (porous Ti2Nb10O29 nanoaggregates (p-TNO NAs) without a template and core-shelled Ti2Nb10O29@C nanospheres (cs-TNO@C NSs)) were formed through annealing in Ar. When examined as anodes for LIBs, the h-TNO NSs electrode with hollow spherical structure displayed a better lithium storage performance. Compared to its counterparts, p-TNO NAs and cs-TNO@C NSs, h-TNO NSs electrode exhibited a higher reversible capacity of 282.5 mAh g-1 at 1C, capacity retention of 79.5% (i.e., 224.6 mAh g-1) after 200 cycles, and a higher rate capacity of 173.1 mAh g-1 at 10C after 600 cycles. The excellent electrochemical performance of h-TNO NSs is attributed to the novel structure. The hollow nanospheres with cavities and thin shells not only exposed more active sites and improved ion diffusion, but also buffered the volume variation upon cycling and facilitated
引用
收藏
页码:919 / 928
页数:10
相关论文
共 64 条
[1]   Synthesis and Electrochemical Properties of TiNb2O7 and Ti2Nb10O29 Anodes under Various Annealing Atmospheres [J].
Adhami, Touraj ;
Ebrahimi-Kahrizsangi, Reza ;
Bakhsheshi-Rad, Hamid Reza ;
Majidi, Somayeh ;
Ghorbanzadeh, Milad ;
Berto, Filippo .
METALS, 2021, 11 (06)
[2]   Titanium Niobium Oxide Ti2Nb10O29/Carbon Hybrid Electrodes Derived by Mechanochemically Synthesized Carbide for High-Performance Lithium-Ion Batteries [J].
Budak, Oeznil ;
Srimuk, Pattarachai ;
Aslan, Mesut ;
Shim, Hwirim ;
Borchardt, Lars ;
Presser, Volker .
CHEMSUSCHEM, 2021, 14 (01) :398-407
[3]   Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries [J].
Cheng, Xin-Bing ;
Hou, Ting-Zheng ;
Zhang, Rui ;
Peng, Hong-Jie ;
Zhao, Chen-Zi ;
Huang, Jia-Qi ;
Zhang, Qiang .
ADVANCED MATERIALS, 2016, 28 (15) :2888-2895
[4]   Electrochemical behavior of interconnected Ti2Nb10O29 nanoparticles for high-power Li-ion battery anodes [J].
De Pham-Cong ;
Kim, Jinwoo ;
Van Tan Tran ;
Kim, Su Jae ;
Jeong, Se-Young ;
Choi, Jun-Hee ;
Cho, Chae Ryong .
ELECTROCHIMICA ACTA, 2017, 236 :451-459
[5]   One-dimensional Ti2Nb10O29 nanowire for enhanced lithium storage [J].
Deng, Chenchen ;
Xu, Jiaxi ;
Yu, Haoxiang ;
Liu, Yiwen ;
Cai, Xinhao ;
Yan, Huihui ;
Fan, Leiyu ;
Shui, Miao ;
Yan, Lei ;
Shu, Jie .
CERAMICS INTERNATIONAL, 2022, 48 (22) :33200-33207
[6]   Synergy of Ion Doping and Spiral Array Architecture on Ti2Nb10O29: A New Way to Achieve High-Power Electrodes [J].
Deng, Shengjue ;
Zhu, He ;
Liu, Bo ;
Yang, Liang ;
Wang, Xiuli ;
Shen, Shenghui ;
Zhang, Yan ;
Wang, Jiaao ;
Ai, Changzhi ;
Ren, Yang ;
Liu, Qi ;
Lin, Shiwei ;
Lu, Yangfan ;
Pan, Guoxiang ;
Wu, Jianbo ;
Xia, Xinhui ;
Tu, Jiangping .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (25)
[7]   Boosting fast energy storage by synergistic engineering of carbon and deficiency [J].
Deng, Shengjue ;
Zhu, He ;
Wang, Guizhen ;
Luo, Mi ;
Shen, Shenghui ;
Ai, Changzhi ;
Yang, Liang ;
Lin, Shiwei ;
Zhang, Qinghua ;
Gu, Lin ;
Liu, Bo ;
Zhang, Yan ;
Liu, Qi ;
Pan, Guoxiang ;
Xiong, Qinqin ;
Wang, Xiuli ;
Xia, Xinhui ;
Tu, Jiangping .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Oxygen vacancy modulated Ti2Nb10O29-x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage [J].
Deng, Shengjue ;
Zhang, Yan ;
Xie, Dong ;
Yang, Liang ;
Wang, Guizhen ;
Zheng, XuSheng ;
Zhu, Junfa ;
Wang, Xiuli ;
Yu, Yan ;
Pan, Guoxiang ;
Xia, Xinhui ;
Tu, Jiangping .
NANO ENERGY, 2019, 58 :355-364
[9]   Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage [J].
Deng, Shengjue ;
Chao, Dongliang ;
Zhong, Yu ;
Zeng, Yinxiang ;
Yao, Zhujun ;
Zhan, Jiye ;
Wang, Yadong ;
Wang, Xiuli ;
Lu, Xihong ;
Xia, Xinhui ;
Tu, Jiangping .
ENERGY STORAGE MATERIALS, 2018, 12 :137-144
[10]   Ti2Nb10O29-x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries [J].
Deng, Shengjue ;
Luo, Zhibin ;
Liu, Yating ;
Lou, Xiaoming ;
Lin, Chunfu ;
Yang, Chao ;
Zhao, Hua ;
Zheng, Peng ;
Sun, Zhongliang ;
Li, Jianbao ;
Wang, Ning ;
Wu, Hui .
JOURNAL OF POWER SOURCES, 2017, 362 :250-257