An Integrated Fast Hough Transform for Multidimensional Data

被引:2
作者
Li, Yanhui [1 ]
Gan, Xiangchao [1 ]
机构
[1] Nanjing Agr Univ, Acad Adv Interdisciplinary Studies, Bioinformat Ctr, State Key Lab Crop Genet & Germplasm Enhancement &, Nanjing 210095, Jiangsu, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Hough Transform; multidimensional data; hyperplane detection; parameter space;
D O I
10.1109/TPAMI.2023.3269202
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Line, plane and hyperplane detection in multidimensional data has many applications in computer vision and artificial intelligence. We propose Integrated Fast Hough Transform (IFHT), a highly-efficient multidimensional Hough transform algorithm based on a new mathematical model. The parameter space of IFHT can be represented with a single k-tree to support hierarchical storage and "coarse-to-fine" search strategy. IFHT essentially changes the least square data-fitting in Li's Fast Hough transform (FHT) to the total least squares data-fitting, in which observational errors across all dimensions are taken into account, thus more practical and more resistant to data noise. It has practically resolved the problem of decreased precision of FHT for target objects mapped to boundaries between accumulators in the parameter space. In addition, it enables a straightforward visualization of the parameter space which not only provides intuitive insight on the number of objects in the data, but also helps with tuning the parameters and combining multiple instances if needed. In all simulated data with different levels of noise and parameters, IFHT surpasses Li's Fast Hough transform in terms of robustness and precision significantly.
引用
收藏
页码:11365 / 11373
页数:9
相关论文
共 23 条
  • [1] Achtert E., 2008, STAT ANAL DATA MIN, V1, P111, DOI [DOI 10.1002/sam.10012, DOI 10.1002/SAM.10012]
  • [2] [Anonymous], 2006, GANDALF FAST COMPUTE
  • [3] A fast discrete approximation algorithm for the Radon transform
    Brady, ML
    [J]. SIAM JOURNAL ON COMPUTING, 1998, 27 (01) : 107 - 119
  • [4] Detection method for auto guide vehicle's walking deviation based on image thinning and Hough transform
    Cao, Xiaohua
    Liu, Daofan
    Ren, Xiaoyu
    [J]. MEASUREMENT & CONTROL, 2019, 52 (3-4) : 252 - 261
  • [5] Gan X., 2008, USA Patent, Patent No. [US7849088B2, 7849088]
  • [6] Discovering biclusters in gene expression data based on high-dimensional linear geometries
    Gan, Xiangchao
    Liew, Alan Wee-Chung
    Yan, Hong
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [7] Hough P.V, 1962, US Patent, Patent No. 3069654
  • [8] THE ADAPTIVE HOUGH TRANSFORM
    ILLINGWORTH, J
    KITTLER, J
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (05) : 690 - 698
  • [9] PROBABILISTIC AND NONPROBABILISTIC HOUGH TRANSFORMS - OVERVIEW AND COMPARISONS
    KALVIAINEN, H
    HIRVONEN, P
    XU, L
    OJA, E
    [J]. IMAGE AND VISION COMPUTING, 1995, 13 (04) : 239 - 252
  • [10] Karpenko SM, 2021, PROBL INFORM TRANSM+, V57, P292, DOI [10.31857/S0555292321030074, 10.1134/S0032946021030078]