A trial deep learning-based model for four-class histologic classification of colonic tumor from narrow band imaging

被引:2
作者
Shimizu, Takeshi [1 ]
Sasaki, Yoshihiro [2 ]
Ito, Kei [1 ]
Matsuzaka, Masashi [2 ]
Sakuraba, Hirotake [3 ]
Fukuda, Shinsaku [4 ]
机构
[1] Sendai Open Hosp, Dept Gastroenterol, Sendai City Med Ctr, 5-22-1 Tsurugaya,Miyagino Ku, Sendai, Miyagi, Japan
[2] Hirosaki Univ Hosp, Dept Med Informat, 53 Hon Cho, Hirosaki, Aomori, Japan
[3] Hirosaki Univ, Dept Gastroenterol & Hematol, Grad Sch Med, 5 Zaifu Cho, Hirosaki, Aomori, Japan
[4] Hirosaki Univ, Dept Community Med Support, Grad Sch Med, Hirosaki, Aomori, Japan
关键词
CONVOLUTIONAL NEURAL-NETWORK; ARTIFICIAL-INTELLIGENCE; ENDOSCOPY; DIAGNOSIS;
D O I
10.1038/s41598-023-34750-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Narrow band imaging (NBI) has been extensively utilized as a diagnostic tool for colorectal neoplastic lesions. This study aimed to develop a trial deep learning (DL) based four-class classification model for low-grade dysplasia (LGD); high-grade dysplasia or mucosal carcinoma (HGD); superficially invasive submucosal carcinoma (SMs) and deeply invasive submucosal carcinomas (SMd) and evaluate its potential as a diagnostic tool. We collected a total of 1,390 NBI images as the dataset, including 53 LGD, 120 HGD, 20 SMs and 17 SMd. A total of 598,801 patches were trimmed from the lesion and background. A patch-based classification model was built by employing a residual convolutional neural network (CNN) and validated by three-fold cross-validation. The patch-based validation accuracy was 0.876, 0.957, 0.907 and 0.929 in LGD, HGD, SMs and SMd, respectively. The image-level classification algorithm was derived from the patch-based mapping across the entire image domain, attaining accuracies of 0.983, 0.990, 0.964, and 0.992 in LGD, HGD, SMs, and SMd, respectively. Our CNN-based model demonstrated high performance for categorizing the histological grade of dysplasia as well as the depth of invasion in routine colonoscopy, suggesting a potential diagnostic tool with minimal human inputs.
引用
收藏
页数:7
相关论文
共 23 条
  • [1] Position statement on priorities for artificial intelligence in GI endoscopy: a report by the ASGE Task Force
    Berzin, Tyler M.
    Parasa, Sravanthi
    Wallace, Michael B.
    Gross, Seth A.
    Repici, Alessandro
    Sharma, Prateek
    [J]. GASTROINTESTINAL ENDOSCOPY, 2020, 92 (04) : 951 - 959
  • [2] HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
    Borgli, Hanna
    Thambawita, Vajira
    Smedsrud, Pia H.
    Hicks, Steven
    Jha, Debesh
    Eskeland, Sigrun L.
    Randel, Kristin Ranheim
    Pogorelov, Konstantin
    Lux, Mathias
    Nguyen, Duc Tien Dang
    Johansen, Dag
    Griwodz, Carsten
    Stensland, Hakon K.
    Garcia-Ceja, Enrique
    Schmidt, Peter T.
    Hammer, Hugo L.
    Riegler, Michael A.
    Halvorsen, Pal
    de Lange, Thomas
    [J]. SCIENTIFIC DATA, 2020, 7 (01)
  • [3] Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model
    Byrne, Michael F.
    Chapados, Nicolas
    Soudan, Florian
    Oertel, Clemens
    Linares Perez, Milagros
    Kelly, Raymond
    Iqbal, Nadeem
    Chandelier, Florent
    Rex, Douglas K.
    [J]. GUT, 2019, 68 (01) : 94 - 100
  • [4] Automatic classification of esophageal disease in gastroscopic images using an efficient channel attention deep dense convolutional neural network
    Du, Wenju
    Rao, Nini
    Dong, Changlong
    Wang, Yingchun
    Hu, Dingcan
    Zhu, Linlin
    Zeng, Bing
    Gan, Tao
    [J]. BIOMEDICAL OPTICS EXPRESS, 2021, 12 (06) : 3066 - 3081
  • [5] Advanced endoscopic imaging: European Society of Gastrointestinal Endoscopy (ESGE) Technology Review
    East, James E.
    Vleugels, Jasper L.
    Roelandt, Philip
    Bhandari, Pradeep
    Bisschops, Raf
    Dekker, Evelien
    Hassan, Cesare
    Horgan, Gareth
    Kiesslich, Ralf
    Longcroft-Wheaton, Gaius
    Wilson, Ana
    Dumonceau, Jean-Marc
    [J]. ENDOSCOPY, 2016, 48 (11) : 1029 - 1045
  • [6] Endoscopic prediction of deep submucosal invasive carcinoma: validation of the Narrow-Band Imaging International Colorectal Endoscopic (NICE) classification
    Hayashi, Nana
    Tanaka, Shinji
    Hewett, David G.
    Kaltenbach, Tonya R.
    Sano, Yasushi
    Ponchon, Thierry
    Saunders, Brian P.
    Rex, Douglas K.
    Soetikno, Roy M.
    [J]. GASTROINTESTINAL ENDOSCOPY, 2013, 78 (04) : 625 - 632
  • [7] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [8] Automated evaluation of colon capsule endoscopic severity of ulcerative colitis using ResNet50
    Higuchi, Naoki
    Hiraga, Hiroto
    Sasaki, Yoshihiro
    Hiraga, Noriko
    Igarashi, Shohei
    Hasui, Keisuke
    Ogasawara, Kohei
    Maeda, Takato
    Murai, Yasuhisa
    Tatsuta, Tetsuya
    Kikuchi, Hidezumi
    Chinda, Daisuke
    Mikami, Tatsuya
    Matsuzaka, Masashi
    Sakuraba, Hirotake
    Fukuda, Shinsaku
    [J]. PLOS ONE, 2022, 17 (06):
  • [9] Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images
    Hirasawa, Toshiaki
    Aoyama, Kazuharu
    Tanimoto, Tetsuya
    Ishihara, Soichiro
    Shichijo, Satoki
    Ozawa, Tsuyoshi
    Ohnishi, Tatsuya
    Fujishiro, Mitsuhiro
    Matsuo, Keigo
    Fujisaki, Junko
    Tada, Tomohiro
    [J]. GASTRIC CANCER, 2018, 21 (04) : 653 - 660
  • [10] Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification
    Hou, Le
    Samaras, Dimitris
    Kurc, Tahsin M.
    Gao, Yi
    Davis, James E.
    Saltz, Joel H.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2424 - 2433