RELATIVELY QUASIMoBIUS MAPPINGS IN BANACH SPACES

被引:0
作者
Zhou, Qingshan [1 ]
Li, Liulan [2 ]
Ponnusamy, Saminathan [3 ,4 ]
He, Yuehui [1 ]
机构
[1] Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
[2] Hengyang Normal Univ, Coll Math & Stat, Hengyang, Hunan, Peoples R China
[3] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[4] Lomonosov Moscow State Univ, Moscow Ctr Fundamental & Appl Math, Moscow, Russia
关键词
Relatively quasimobius maps; quasihyperbolic metric; distance ratio metric; uniform domains; natural domains; invariance;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper, we explore relatively quasimobius invariance of & phi;uniform domains and natural domains. Firstly, we prove that the control function of relatively quasimobius mappings can be chosen in a power form. Applying this observation and a deformed cross-ratio introduced by Bonk and Kleiner, we next show that relatively quasimobius mappings are coarsely bilipschitz in the distance ratio metric. Combined with the assumption that the mapping is coarsely bilipschitz in the quasihyperbolic metric, we establish relatively quasimobius invariance of & phi;-uniform domains and natural domains. As a by-product, we also obtain a similar result for uniform domains which provides a new method to answer a question posed by Vaisala.
引用
收藏
页数:12
相关论文
共 28 条
[1]   SPHERICALIZATION AND FLATTENING [J].
Balogh, Zoltan M. ;
Buckley, Stephen M. .
CONFORMAL GEOMETRY AND DYNAMICS, 2005, 9 :76-101
[2]   Quasisymmetric parametrizations of two-dimensional metric spheres [J].
Bonk, M ;
Kleiner, B .
INVENTIONES MATHEMATICAE, 2002, 150 (01) :127-183
[3]  
Buckley SM, 2008, INDIANA U MATH J, V57, P837
[4]  
Buyalo S., 2007, EMS MONOGRAPHS MATH
[5]   Quasi-Mobius Homeomorphisms of Morse boundaries [J].
Charney, Ruth ;
Cordes, Matthew ;
Murray, Devin .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (03) :501-515
[6]   UNIFORM DOMAINS AND THE QUASI-HYPERBOLIC METRIC [J].
GEHRING, FW ;
OSGOOD, BG .
JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 :50-74
[7]   QUASI-CONFORMALLY HOMOGENEOUS DOMAINS [J].
GEHRING, FW ;
PALKA, BP .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 :172-199
[8]  
Hag K, 1987, COMPLEX VARIABLES TH, V9, P175
[9]  
Hasto P.., 2016, J. Anal., V24, P57, DOI DOI 10.1007/S41478-016-0011-8
[10]   UNIFORMITY FROM GROMOV HYPERBOLICITY [J].
Herron, David ;
Shanmugalingam, Nageswari ;
Xie, Xiangdong .
ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (04) :1065-1109