Modified 5-point fractional formula with Richardson extrapolation

被引:7
作者
Batiha, Iqbal M. [1 ,2 ]
Alshorm, Shameseddin [1 ]
Jebril, Iqbal [1 ]
Zraiqat, Amjed [1 ]
Momani, Zaid [3 ]
Momani, Shaher [2 ,4 ]
机构
[1] Al Zaytoonah Univ Jordan, Dept Math, Amman 11733, Jordan
[2] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emirates
[3] Univ Texas Arlington, Dept Civil Engn, Box 19308,428 Nedderman Hall, Arlington, TX 76019 USA
[4] Univ Jordan, Dept Math, Amman 11942, Jordan
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 04期
关键词
Richardson extrapolation; Riemann-Liouville fractional derivative and integral; Lagrange interpolating polynomial; Caputo derivative;
D O I
10.3934/math.2023480
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a novel fractional numerical modification of the 5-point classical central formula; called the modified 5-point fractional formula for approximating the first fractional-order derivative in the sense of the Caputo operator. Accordingly, we then introduce a new methodology for Richardson extrapolation depending on the fractional central formula in order to obtain a high accuracy for the gained approximations. We compare the efficiency of the proposed methods by using tables and figures to show their reliability.
引用
收藏
页码:9520 / 9534
页数:15
相关论文
共 24 条
[1]  
Aho Alfred V, 1974, Addison-Wesley Series in Computer Science and Information Processing, P5
[2]  
Aitken A. C., 1932, Proc. Edinburgh Math. Soc., V3, P56
[3]   Numerical solutions for linear fractional differential equations of order 1 < alpha < 2 using finite difference method (FFDM) [J].
Albadarneh, Ramzi B. ;
Batiha, Iqbal M. ;
Zurigat, Mohammad .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2016, 16 (01) :103-111
[4]  
Albadarneh RB., 2021, INT J EL COMP ENG SY, V11, P5367, DOI DOI 10.11591/IJECE.V11I6.PP5367-5378
[5]  
Allgower E. L., 1990, Numerical continuation methods
[6]  
[Anonymous], 1984, Computer Science and Applied Mathematics
[7]  
[Anonymous], 2005, Numerical Analysis
[8]  
[Anonymous], 1992, Numerical Analysis of Partial Differential Equations
[9]  
Argyros I.K., 1993, The Theory and Application of Iteration Methods, DOI DOI 10.1201/9780203719169
[10]   (N+1)-dimensional fractional reduced differential transform method for fractional order partial differential equations [J].
Arshad, Muhammad ;
Lu, Dianchen ;
Wang, Jun .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 :509-519