Tuning the physico-chemical properties of SnSe films by pulse electrodeposition

被引:4
作者
De Vos, Melanie [1 ]
Zimmer, Alexandre [1 ]
Toledo, Milan [1 ]
Ghanbaja, Jaafar [2 ]
Haye, Emile [3 ]
Pernot, Gilles [4 ]
Lacroix, David [4 ]
Stein, Nicolas [1 ]
机构
[1] Univ Lorraine, CNRS, IJL, F-57000 Metz, France
[2] Univ Lorraine, CNRS, IJL, F-54000 Nancy, France
[3] Univ Namur, LARN, NISM, B-5000 Namur, Belgium
[4] Univ Lorraine, CNRS, LEMTA, F-54000 Nancy, France
基金
瑞士国家科学基金会;
关键词
SnSe; Thin film; Electrodeposition; Microstructure; Optical properties; OPTICAL-PROPERTIES; THIN-FILMS; THERMOELECTRIC PROPERTIES; TIN; PARAMETERS; COATINGS; GROWTH; TEMPERATURE; DEPOSITION; MORPHOLOGY;
D O I
10.1016/j.apsusc.2023.156845
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
SnSe is semiconductor with various applications in optoelectronic devices, but its synthesis still facing chal-lenges. Here, an original approach to tune the morphology, the optical properties and microstructure of SnSe films is proposed, based on the change of pulse duration during electrodeposition. The syntheses were carried out at a unique applied potential of-0.55 V vs AgCl/Ag with pulse durations (tON) ranging from 50 ms to 500 ms. The microstructure was systematically studied with SEM, TEM, XRD and XPS characterizations. First, the for-mation of SnSe of compact films without pinholes is demonstrated, with no significant change of composition (Se/Sn ratio close to 1:1). All the films are crystalized according to the Pnma orthorhombic phase with a pref-erential growth direction perpendicular to the (111) direction. The increase of pulse duration from 50 to 500 ms reduces the crystallinity of film, but less Se and SnO2 by-products are formed. Finally, the absorption coefficient of the films was extracted from ellipsometric measurements and evaluated in the near-edge region to evaluate the optical bandgaps. The results confirmed a slight change in the optical bandgap, from 1 to 1.1 eV. This work opens new alternative to tune physico-chemical properties of SnSe films.
引用
收藏
页数:9
相关论文
共 63 条
[1]   Lattice thermal conductivity of Bi2Te3 and SnSe using Debye-Callaway and Monte Carlo phonon transport modeling: Application to nanofilms and nanowires [J].
Al-Alam, Patricia ;
Pernot, Gilles ;
Isaiev, Mykola ;
Lacroix, David ;
De Vos, Melanie ;
Stein, Nicolas ;
Osenberg, David ;
Philippe, Laetitia .
PHYSICAL REVIEW B, 2019, 100 (11)
[2]   Phase changeable silver selenide thin films fabricated by pulse electrodeposition [J].
An, Boo Hyun ;
Ji, Hye Min ;
Wu, Jun-Hua ;
Cho, Moon Kyu ;
Yang, Ki-Yeon ;
Lee, Heon ;
Kim, Young Keun .
CURRENT APPLIED PHYSICS, 2009, 9 (06) :1338-1340
[3]   Properties of pulse plated SnSe films [J].
Ananthi, K. ;
Thilakavathy, K. ;
Muthukumarasamy, N. ;
Dhanapandian, S. ;
Murali, K. R. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2012, 23 (07) :1338-1341
[4]   MECHANISM OF HIGH-TEMPERATURE OXIDATION OF TIN SELENIDE [J].
BADRINARAYANAN, S ;
MANDALE, AB ;
GUNJIKAR, VG ;
SINHA, APB .
JOURNAL OF MATERIALS SCIENCE, 1986, 21 (09) :3333-3338
[5]   SnO2 Nanocrystalline Thin Films by XPS [J].
Barreca, Davide ;
Garon, Simona ;
Tondello, Eugenio ;
Zanella, Pierino .
Surface Science Spectra, 2000, 7 (02) :81-85
[6]   Chemically Deposited SnSe Thin Films: Thermal Stability and Solar Cell Application [J].
Barrios-Salgado, Enue ;
Nair, M. T. S. ;
Nair, P. K. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2014, 3 (08) :Q169-Q175
[7]   Electrodeposition and growth mechanism of SnSe thin films [J].
Bicer, Mustafa ;
Sisman, Ilkay .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2944-2949
[8]   Tin whisker growth from electroplated finishes - a review [J].
Bunyan, D. ;
Ashworth, M. A. ;
Wilcox, G. D. ;
Higginson, R. L. ;
Heath, R. J. ;
Liu, C. .
TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 2013, 91 (05) :249-259
[9]  
Burton M.R., 2020, ACS APPL MATER INTER
[10]   Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity [J].
Burton, Matthew R. ;
Liu, Tianjun ;
McGettrick, James ;
Mehraban, Shahin ;
Baker, Jenny ;
Pockett, Adam ;
Watson, Trystan ;
Fenwick, Oliver ;
Carnie, Matthew J. .
ADVANCED MATERIALS, 2018, 30 (31)