A computational map of the human-SARS-CoV-2 protein-RNA interactome predicted at single-nucleotide resolution

被引:8
作者
Horlacher, Marc [1 ]
Oleshko, Svitlana [1 ]
Hu, Yue [1 ,6 ]
Ghanbari, Mahsa [2 ,3 ,4 ]
Cantini, Giulia [1 ]
Schinke, Patrick [1 ]
Vergara, Ernesto Elorduy [1 ]
Bittner, Florian [5 ]
Mueller, Nikola S.
Ohler, Uwe [2 ,3 ,4 ]
Moyon, Lambert [1 ]
Marsico, Annalisa [1 ]
机构
[1] Helmholtz Ctr Munich, Computat Hlth Ctr, Munich, Germany
[2] Humboldt Univ, Inst Biol, Berlin, Germany
[3] Humboldt Univ, Inst Comp Sci, Berlin, Germany
[4] Max Delbruck Ctr, Computat Regulatory Genom, Berlin, Germany
[5] Knowing01 GmbH, Munich, Germany
[6] Tech Univ Munich, Informat Chair Bioinformat 12, Garching, Germany
关键词
NEURAL-NETWORKS; IN-VIVO; BINDING; SARS-COV-2; REVEALS; CORONAVIRUS; IDENTIFICATION; SPECIFICITY; SEQUENCE; VARIANT;
D O I
10.1093/nargab/lqad010
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
RNA-binding proteins (RBPs) are critical host factors for viral infection, however, large scale experimental investigation of the binding landscape of human RBPs to viral RNAs is costly and further complicated due to sequence variation between viral strains. To fill this gap, we investigated the role of RBPs in the context of SARS-CoV-2 by constructing the first in silico map of human RBP-viral RNA interactions at nucleotide-resolution using two deep learning methods (pysster and DeepRiPe) trained on data from CLIP-seq experiments on more than 100 human RBPs. We evaluated conservation of RBP binding between six other human pathogenic coronaviruses and identified sites of conserved and differential binding in the UTRs of SARS-CoV-1, SARS-CoV-2 and MERS. We scored the impact of mutations from 11 variants of concern on protein-RNA interaction, identifying a set of gain- and loss-of-binding events, as well as predicted the regulatory impact of putative future mutations. Lastly, we linked RBPs to functional, OMICs and COVID-19 patient data from other studies, and identified MBNL1, FTO and FXR2 RBPs as potential clinical biomarkers. Our results contribute towards a deeper understanding of how viruses hijack host cellular pathways and open new avenues for therapeutic intervention.
引用
收藏
页数:23
相关论文
共 88 条
[1]  
[Anonymous], KNOWING01
[2]   In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-canonical Nucleic Acid Structures in Their Lifecycles [J].
Bartas, Martin ;
Brazda, Vaclav ;
Bohalova, Natalia ;
Cantara, Alessio ;
Volna, Adriana ;
Stachurova, Tereza ;
Malachova, Katerina ;
Jagelska, Eva B. ;
Porubiakova, Otilia ;
Cerven, Jiri ;
Pecinka, Petr .
FRONTIERS IN MICROBIOLOGY, 2020, 11
[3]   Proteomics of SARS-CoV-2-infected host cells reveals therapy targets [J].
Bojkova, Denisa ;
Klann, Kevin ;
Koch, Benjamin ;
Widera, Marek ;
Krause, David ;
Ciesek, Sandra ;
Cinatl, Jindrich ;
Muench, Christian .
NATURE, 2020, 583 (7816) :469-+
[4]   pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks [J].
Budach, Stefan ;
Marsico, Annalisa .
BIOINFORMATICS, 2018, 34 (17) :3035-3037
[5]   Targeting the m6A RNA modification pathway blocks SARS-CoV-2 and HCoV-OC43 replication [J].
Burgess, Hannah M. ;
Depledge, Daniel P. ;
Thompson, Letitia ;
Srinivas, Kalanghad Puthankalam ;
Grande, Rebecca C. ;
Vink, Elizabeth I. ;
Abebe, Jonathan S. ;
Blackaby, Wesley P. ;
Hendrick, Alan ;
Albertella, Mark R. ;
Kouzarides, Tony ;
Stapleford, Kenneth A. ;
Wilson, Angus C. ;
Mohr, Ian .
GENES & DEVELOPMENT, 2021, 35 (13-14) :1005-1019
[6]   Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection [J].
Ciccosanti, Fabiola ;
Di Rienzo, Martina ;
Romagnoli, Alessandra ;
Colavita, Francesca ;
Refolo, Giulia ;
Castilletti, Concetta ;
Agrati, Chiara ;
Brai, Annalaura ;
Manetti, Fabrizio ;
Botta, Lorenzo ;
Capobianchi, Maria Rosaria ;
Ippolito, Giuseppe ;
Piacentini, Mauro ;
Fimia, Gian Maria .
ANTIVIRAL RESEARCH, 2021, 190
[7]   Serum Proteomics in COVID-19 Patients: Altered Coagulation and Complement Status as a Function of IL-6 Level [J].
D'Alessandro, Angelo ;
Thomas, Tiffany ;
Dzieciatkowska, Monika ;
Hill, Ryan C. ;
Francis, Richard O. ;
Hudson, Krystalyn E. ;
Zimring, James C. ;
Hod, Eldad A. ;
Spitalnik, Steven L. ;
Hansen, Kirk C. .
JOURNAL OF PROTEOME RESEARCH, 2020, 19 (11) :4417-4427
[8]   How viruses hijack cell regulation [J].
Davey, Norman E. ;
Trave, Gilles ;
Gibson, Toby J. .
TRENDS IN BIOCHEMICAL SCIENCES, 2011, 36 (03) :159-169
[9]   A time-resolved proteomic and prognostic map of COVID-19 [J].
Demichev, Vadim ;
Tober-Lau, Pinkus ;
Lemke, Oliver ;
Nazarenko, Tatiana ;
Thibeault, Charlotte ;
Whitwell, Harry ;
Roehl, Annika ;
Freiwald, Anja ;
Szyrwiel, Lukasz ;
Ludwig, Daniela ;
Correia-Melo, Clara ;
Aulakh, Simran Kaur ;
Helbig, Elisa T. ;
Stubbemann, Paula ;
Lippert, Lena J. ;
Gruening, Nana-Maria ;
Blyuss, Oleg ;
Vernardis, Spyros ;
White, Matthew ;
Messner, Christoph B. ;
Joannidis, Michael ;
Sonnweber, Thomas ;
Klein, Sebastian J. ;
Pizzini, Alex ;
Wohlfarter, Yvonne ;
Sahanic, Sabina ;
Hilbe, Richard ;
Schaefer, Benedikt ;
Wagner, Sonja ;
Mittermaier, Mirja ;
Machleidt, Felix ;
Garcia, Carmen ;
Ruwwe-Gloesenkamp, Christoph ;
Lingscheid, Tilman ;
de Jarcy, Laure Bosquillon ;
Stegemann, Miriam S. ;
Pfeiffer, Moritz ;
Juergens, Linda ;
Denker, Sophy ;
Zickler, Daniel ;
Enghard, Philipp ;
Zelezniak, Aleksej ;
Campbell, Archie ;
Hayward, Caroline ;
Porteous, David J. ;
Marioni, Riccardo E. ;
Uhrig, Alexander ;
Mueller-Redetzky, Holger ;
Zoller, Heinz ;
Loeffler-Ragg, Judith .
CELL SYSTEMS, 2021, 12 (08) :780-+
[10]   Identification and validation of predictive factors for progression to severe COVID-19 pneumonia by proteomics [J].
Di, Biao ;
Jia, Hongling ;
Luo, Oscar Junhong ;
Lin, Fangqin ;
Li, Kuibiao ;
Zhang, Yuanliang ;
Wang, Huadong ;
Liang, Huiying ;
Fan, Jun ;
Yang, Zhicong .
SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2020, 5 (01)