Modified Cellulose Proton-Exchange Membranes for Direct Methanol Fuel Cells

被引:15
作者
Palanisamy, Gowthami [1 ]
Oh, Tae Hwan [1 ]
Thangarasu, Sadhasivam [1 ]
机构
[1] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, South Korea
关键词
fuel cell; cellulose membrane; Nafion membrane; hydrocarbon membrane; proton-exchange membrane; direct methanol fuel cell; methanol permeability; cost-effective; high performance; proton conductivity; POLYMER ELECTROLYTE MEMBRANES; SULFONATED POLYSULFONE; MICROCRYSTALLINE CELLULOSE; NANOCOMPOSITE MEMBRANES; COMPOSITE MEMBRANES; BIOCELLULOSE MEMBRANE; NAFION MEMBRANE; GRAPHENE OXIDE; ETHER SULFONE; ACID;
D O I
10.3390/polym15030659
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A direct methanol fuel cell (DMFC) is an excellent energy device in which direct conversion of methanol to energy occurs, resulting in a high energy conversion rate. For DMFCs, fluoropolymer copolymers are considered excellent proton-exchange membranes (PEMs). However, the high cost and high methanol permeability of commercial membranes are major obstacles to overcome in achieving higher performance in DMFCs. Novel developments have focused on various reliable materials to decrease costs and enhance DMFC performance. From this perspective, cellulose-based materials have been effectively considered as polymers and additives with multiple concepts to develop PEMs for DMFCs. In this review, we have extensively discussed the advances and utilization of cost-effective cellulose materials (microcrystalline cellulose, nanocrystalline cellulose, cellulose whiskers, cellulose nanofibers, and cellulose acetate) as PEMs for DMFCs. By adding cellulose or cellulose derivatives alone or into the PEM matrix, the performance of DMFCs is attained progressively. To understand the impact of different structures and compositions of cellulose-containing PEMs, they have been classified as functionalized cellulose, grafted cellulose, acid-doped cellulose, cellulose blended with different polymers, and composites with inorganic additives.
引用
收藏
页数:28
相关论文
共 200 条
[1]   Proton Conductive, Low Methanol Crossover Cellulose-Based Membranes [J].
Aburabie, Jamaliah ;
Lalia, Boor ;
Hashaikeh, Raed .
MEMBRANES, 2021, 11 (07)
[2]   Overview of hybrid membranes for direct-methanol fuel-cell applications [J].
Ahmad, H. ;
Kamarudin, S. K. ;
Hasran, U. A. ;
Daud, W. R. W. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (05) :2160-2175
[3]   Improvement of direct methanol fuel cell performance using a novel mordenite barrier layer [J].
Al-Batty, S. ;
Dawson, C. ;
Shanmukham, S. P. ;
Roberts, E. P. L. ;
Holmes, S. M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (28) :10850-10857
[4]   Active direct methanol fuel cell: An overview [J].
Alias, M. S. ;
Kamarudin, S. K. ;
Zainoodin, A. M. ;
Masdar, M. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (38) :19620-19641
[5]   A Review of The Methanol Economy: The Fuel Cell Route [J].
Araya, Samuel Simon ;
Liso, Vincenzo ;
Cui, Xiaoti ;
Li, Na ;
Zhu, Jimin ;
Sahlin, Simon Lennart ;
Jensen, Soren Hojgaard ;
Nielsen, Mads Pagh ;
Kaer, Soren Knudsen .
ENERGIES, 2020, 13 (03)
[6]   Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review [J].
Awang, N. ;
Ismail, A. F. ;
Jaafar, J. ;
Matsuura, T. ;
Junoh, H. ;
Othman, M. H. D. ;
Rahman, M. A. .
REACTIVE & FUNCTIONAL POLYMERS, 2015, 86 :248-258
[7]   Highly selective SPEEK/ENR blended polymer electrolyte membranes for direct methanol fuel cell [J].
Azman, W. N. E. Wan Mohd Noral ;
Jaafar, J. ;
Salleh, W. N. W. ;
Ismail, A. F. ;
Othman, M. H. D. ;
Rahman, M. A. ;
Rasdi, F. R. M. .
MATERIALS TODAY ENERGY, 2020, 17
[8]   Extraction of Microcrystalline Cellulose from Washingtonia Fibre and Its Characterization [J].
Azum, Naved ;
Jawaid, Mohammad ;
Kian, Lau Kia ;
Khan, Anish ;
Alotaibi, Maha Moteb .
POLYMERS, 2021, 13 (18)
[9]   Introduction of a new active and stable cathode catalyst based on bimetal-organic frameworks/ PPy-sheet for alkaline direct ethanol fuel cell [J].
Bagheri, Seyed Mohammad Seyed ;
Gharibi, Hussein ;
Zhiani, Mohammad .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (56) :23552-23569
[10]   Carbon Nanofiber Double Active Layer and Co-Incorporation as New Anode Modification Strategies for Power-Enhanced Microbial Fuel Cells [J].
Barakat, Nasser A. M. ;
Amen, Mohamed Taha ;
Ali, Rasha H. ;
Nassar, Mamdouh M. ;
Fadali, Olfat A. ;
Ali, Marwa A. ;
Kim, Hak Yong .
POLYMERS, 2022, 14 (08)