Comparative analysis of numerical with optical soliton solutions of stochastic Gross-Pitaevskii equation in dispersive media

被引:26
作者
Baber, Muhammad Zafarullah [1 ]
Ahmed, Nauman [1 ]
Yasin, Muhammad Waqas [1 ,3 ]
Iqbal, Muhammad Sajid [2 ]
Akgul, Ali [4 ,5 ,9 ]
Riaz, Muhammad Bilal [6 ]
Rafiq, Muhammad [7 ,9 ]
Raza, Ali [8 ]
机构
[1] Univ Lahore, Dept Math & Stat, Lahore, Pakistan
[2] NUST, Dept Humanities & Basic Sci, Mil Coll Signals, Islamabad, Pakistan
[3] Univ Narowal, Dept Math, Narowal, Pakistan
[4] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[5] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkey
[6] Gdansk Univ Technol, Fac Appl Phys & Math, Narutowicza 11-12, PL-80233 Gdansk, Poland
[7] Univ Cent Punjab, Fac Sci & Technol, Dept Math, Lahore, Pakistan
[8] Govt Maulana Zafar Ali Khan Grad Coll Wazirabad, Dept Math, Punjab Higher Educ Dept PHED, Lahore 52000, Pakistan
[9] Near East Univ, Math Res Ctr, Dept Math, Near East Blvd, TR-99138 Nicosia 10, Turkey
关键词
Proposed SNSFD scheme; Stability analysis of scheme; Consistency of scheme; Exact solutions; Stochastic Gross-Pitaevskii equation (SGPE); SSE technique; MERF technique; FINITE-DIFFERENCE; APPROXIMATE; SCHEME;
D O I
10.1016/j.rinp.2022.106175
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article deals with the stochastic Gross-Pitaevskii equation (SGPE) perturbed with multiplicative time noise. The numerical solutions of the governing model are carried out with the proposed stochastic non-standard finite difference (SNSFD) scheme. The stability of the scheme is proved by using the Von-Neumann criteria and the consistency is shown in the mean square sense. To seek exact solutions, we applied the Sardar subequation (SSE) and modified exponential rational functional (MERF) techniques. The exact solutions are constructed in the form of exponential, hyperbolic, and trigonometric forms. Finally, the comparison of the exact solutions with numerical solutions is drawn in the 3D and line plots for the different values of parameters.
引用
收藏
页数:14
相关论文
共 63 条
  • [1] Soliman AA, 2012, Arxiv, DOI arXiv:1207.5127
  • [2] A new modification in the exponential rational function method for nonlinear fractional differential equations
    Ahmed, Naveed
    Bibi, Sadaf
    Khan, Umar
    Mohyud-Din, Syed Tauseef
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (02): : 1 - 11
  • [3] Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises
    Ahn, Shin Mi
    Ha, Seung-Yeal
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
  • [4] Akinyemi L., 2022, J OCEAN ENG SCI
  • [5] Exponential rational function method for space-time fractional differential equations
    Aksoy, Esin
    Kaplan, Melike
    Bekir, Ahmet
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2016, 26 (02) : 142 - 151
  • [6] Nonlinear modes for the Gross-Pitaevskii equation - a demonstrative computation approach
    Alfimov, G. L.
    Zezyulin, D. A.
    [J]. NONLINEARITY, 2007, 20 (09) : 2075 - 2092
  • [7] Exact solutions for the nonlinear extended KdV equation in a stratified shear flow using modified exponential rational method
    Althobaiti, Ali
    Althobaiti, Saad
    El-Rashidy, K.
    Seadawy, Aly R.
    [J]. RESULTS IN PHYSICS, 2021, 29
  • [8] Approximate solutions for the generalized KdV-Burgers' equation by He's variational iteration method
    Assas, Laila M. B.
    [J]. PHYSICA SCRIPTA, 2007, 76 (02) : 161 - 164
  • [9] Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation
    Bao, WZ
    Jaksch, D
    Markowich, PA
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 318 - 342
  • [10] Bilal M., 2021, OPT QUANT ELECTRON, V53, P1, DOI [10.1007/s11082-021-02939-3, DOI 10.1007/S11082-021-02939-3]