Mather classes and conormal spaces of Schubert varieties in cominuscule spaces

被引:1
作者
Mihalcea, Leonardo C. [1 ]
Singh, Rahul [2 ]
机构
[1] Virginia Tech, Dept Math, 460 McBryde Hall,225 Stanger St, Blacksburg, VA 24061 USA
[2] Tutor Intelligence, 283 Franklin St, Boston, MA 02110 USA
来源
ALGEBRAIC GEOMETRY | 2023年 / 10卷 / 05期
关键词
Chern-Mather class; Euler obstruction; conormal space; Schubert variety; positivity; log concavity; SCHWARTZ-MACPHERSON CLASSES; CHARACTERISTIC CYCLES; CHERN CLASSES; SMALL RESOLUTIONS; REPRESENTATIONS; CELLS;
D O I
10.14231/AG-2023-019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G/P be a complex cominuscule flag manifold. We prove a type-independent formula for the torus-equivariant Mather class of a Schubert variety in G/P and for a Schubert variety pulled back via the natural projection G/Q -> G/P for a parabolic subgroup Q subset of P. We apply this to find formulae for the local Euler obstructions of Schubert varieties and for the torus-equivariant localizations of the conormal spaces of these Schubert varieties. We conjecture positivity properties for the local Euler obstructions and for the Schubert expansion of Mather classes, and we prove this conjecture in Lie types A, B, and D. We also conjecture that certain 'Mather polynomials' are unimodal in general Lie type and log concave in type A.
引用
收藏
页码:554 / 575
页数:22
相关论文
共 66 条
  • [1] Aluffi P., Duke Math. J
  • [2] Aluffi P, 2022, Arxiv, DOI arXiv:2212.12509
  • [3] Chern-Schwartz-MacPherson classes for Schubert cells in flag manifolds
    Aluffi, Paolo
    Mihalcea, Leonardo C.
    [J]. COMPOSITIO MATHEMATICA, 2016, 152 (12) : 2603 - 2625
  • [4] CHERN CLASSES OF SCHUBERT CELLS AND VARIETIES
    Aluffi, Paolo
    Mihalcea, Leonardo Constantin
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2009, 18 (01) : 63 - 100
  • [5] ANDERSEN HH, 1994, ASTERISQUE, P3
  • [6] Anderson D., 2022, Equivariant cohomology in algebraic geometry
  • [7] [Anonymous], 2021, arXiv
  • [8] BEILINSON A, 1981, CR ACAD SCI I-MATH, V292, P15
  • [9] Kostant polynomials and the cohomology ring for G/B
    Billey, SC
    [J]. DUKE MATHEMATICAL JOURNAL, 1999, 96 (01) : 205 - 224
  • [10] Characteristic cycles in Hermitian symmetric spaces
    Boe, BD
    Fu, JHG
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (03): : 417 - 467