Small Data Solutions for the Vlasov-Poisson System with a Repulsive Potential

被引:1
作者
Velozo Ruiz, Anibal [1 ]
Velozo Ruiz, Renato [2 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Ave Vicuna Mackenna 4860, Santiago, Chile
[2] Univ Pierre & Marie Curie Paris 6, Lab Jacques Louis Lions, 4 Pl Jussieu, F-75252 Paris, France
关键词
FOKKER-PLANCK EQUATION; KINETIC-EQUATIONS; ORBITAL STABILITY; GLOBAL EXISTENCE; MINKOWSKI SPACE; HYPOCOERCIVITY; PROPAGATION; REGULARITY; STATES; TIME;
D O I
10.1007/s00220-024-04970-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study small data solutions for the Vlasov-Poisson system with the simplest external potential, for which unstable trapping holds for the associated Hamiltonian flow. We prove sharp decay estimates in space and time for small data solutions to the Vlasov-Poisson system with the repulsive potential -|x|22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{-|x|<^>2}{2}$$\end{document} in dimension two or higher. The proofs are obtained through a commuting vector field approach. We exploit the uniform hyperbolicity of the Hamiltonian flow, by making use of the commuting vector fields contained in the stable and unstable invariant distributions of phase space for the linearized system. In dimension two, we make use of modified vector field techniques due to the slow decay estimates in time. Moreover, we show an explicit teleological construction of the trapped set in terms of the non-linear evolution of the force field.
引用
收藏
页数:45
相关论文
共 48 条
[1]  
BARDOS C, 1985, ANN I H POINCARE-AN, V2, P101
[2]   STATIONARY SPHERICALLY SYMMETRICAL MODELS IN STELLAR DYNAMICS [J].
BATT, J ;
FALTENBACHER, W ;
HORST, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 93 (02) :159-183
[3]   Asymptotic Properties of the Solutions to the Vlasov-Maxwell System in the Exterior of a Light Cone [J].
Bigorgne, Leo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (05) :3729-3793
[4]   Sharp Asymptotic Behavior of Solutions of the 3d Vlasov-Maxwell System with Small Data [J].
Bigorgne, Leo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) :893-992
[5]  
Binney J., 2008, Galactic Dynamics, V2nd edn, DOI DOI 10.2307/J.CTVC778FF
[6]  
Carrapatoso K, 2024, Arxiv, DOI arXiv:2105.04855
[7]   PHASE MIXING FOR SOLUTIONS TO 1D TRANSPORT EQUATION IN A CONFINING POTENTIAL [J].
Chaturvedi, Sanchit ;
Luk, Jonathan .
KINETIC AND RELATED MODELS, 2022, 15 (03) :403-416
[8]  
Christodoulou D., 1993, The global nonlinear stability of the Minkowski space, volume 41 of Princeton Mathematical Series, V41
[9]   A multivariate Faa di Bruno formula with applications [J].
Constantine, GM ;
Savits, TH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (02) :503-520
[10]   HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS [J].
Dolbeault, Jean ;
Mouhot, Clement ;
Schmeiser, Christian .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (06) :3807-3828