Enhanced hydrogen sorption properties of uniformly dispersed Pd-decorated three-dimensional (3D) Mg@Pd architecture

被引:10
作者
Lu, Chong [1 ,2 ,3 ]
Panda, Subrata [1 ,2 ,4 ]
Zhu, Wen [1 ,2 ]
Ma, Yanling [1 ]
Zou, Jianxin [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Natl Engn Res Ctr Light Alloy Net Forming, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Ctr Hydrogen Sci, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Instrumental Anal Ctr, Shanghai 200240, Peoples R China
[4] BHU, Dept Ceram Engn, Indian Inst Technol IIT, Varanasi 221005, UP, India
基金
美国国家科学基金会;
关键词
Mg@Pd; Hydrogen sorption; Catalysis; Hydrogen pump; Phase inversion; STORAGE PROPERTIES; CATALYTIC-ACTIVITY; KINETICS; NI; NANOPARTICLES; NANOCRYSTALS; HYDRIDE; ALLOY; CO; ABSORPTION;
D O I
10.1016/j.ijhydene.2023.08.271
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study demonstrates the hydrogen sorption improvement of Mg through the threedimensional decoration of a noble catalyst. An Mg@Pd composite was synthesized by decorating Pd nanoparticles onto the Mg matrix via a facile solid-gas reduction method. Electron tomography analysis confirms the formation of a three-dimensional (3D) architecture of the Mg@Pd particulate composite. The Mg@Pd composite shows excellent hydrogenation/dehydrogenation kinetics even at low temperatures as compared to a catalystfree Mg sample. Moreover, the hydrogenated Mg@Pd composite can desorb hydrogen at as low as 246 degrees C that is 87 degrees C lower than that of the pure MgH2. Hydrogenation of the Mg@Pd composite leads to the development of a multiphase system consisted of PdH0.706, MgPd and MgH2 whereas dehydrogenation occurred via two simultaneous desorption reactions results in Mg6Pd and Mg phases. The uniform dispersion of Pd nanoparticles on the surface of the 3D Mg matrix has provided with fast catalytic interfaces via the hydrogen "spillover" mechanism while the concomitant hydrogen diffusion processes are enhanced by the "hydrogen pump" effect of PdH0.706/MgPd interfaces. Furthermore, the low temperature hydrogen sorption performances of the Mg@Pd composite can be attributed to the interphase reversibility between MgPd and Mg6Pd leading to the thermodynamic destabilization of MgH2. This study suggests that strategically new approaches can govern significant improvements in hydrogen storage properties of Mg-based systems. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:979 / 989
页数:11
相关论文
共 66 条
[11]   Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism [J].
Cui, Jie ;
Liu, Jiangwen ;
Wang, Hui ;
Ouyang, Liuzhang ;
Sun, Dalin ;
Zhu, Min ;
Yao, Xiangdong .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (25) :9645-9655
[12]   The "burst effect" of hydrogen desorption in MgH2 dehydrogenation [J].
Dong, Shuai ;
Li, Chaoqun ;
Wang, Jinhui ;
Liu, Hao ;
Ding, Zhao ;
Gao, Zhengyang ;
Yang, Weijie ;
Lv, Wei ;
Wei, Li ;
Wu, Ying ;
Li, Hao .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (42) :22363-22372
[13]   Hydrogen spillover mechanism on a Pd-doped Mg surface as revealed by ab initio density functional calculation [J].
Du, A. J. ;
Smith, Sean C. ;
Yao, X. D. ;
Lu, G. Q. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (33) :10201-10204
[14]   Anchoring Mo single atoms on N-CNTs synchronizes hydrogenation/dehydrogenation property of Mg/MgH2 [J].
Duan, Congwen ;
Tian, Yating ;
Wang, Xinya ;
Wu, Jinhui ;
Liu, Bogu ;
Fu, Dong ;
Zhang, Yuling ;
Lv, Wei ;
Hu, Lianxi ;
Wang, Fei ;
Zhang, Xu ;
Wu, Ying .
NANO ENERGY, 2023, 113
[15]   Ti3AlCN MAX for tailoring MgH2 hydrogen storage material: from performance to mechanism [J].
Duan, Xing-Qing ;
Li, Guang-Xu ;
Zhang, Wen-Hui ;
Luo, Hui ;
Tang, Hai-Mei ;
Xu, Li ;
Sheng, Peng ;
Wang, Xin-Hua ;
Huang, Xian-Tun ;
Huang, Cun-Ke ;
Lan, Zhi-Qiang ;
Zhou, Wen-Zheng ;
Guo, Jin ;
Ismail, Mohammd Bin ;
Liu, Hai-Zhen .
RARE METALS, 2023, 42 (06) :1923-1934
[16]   Study of doping effects with 3d and 4d-transition metals on the hydrogen storage properties of MgH2 [J].
El Khatabi, M. ;
Bhihi, M. ;
Naji, S. ;
Labrim, H. ;
Benyoussef, A. ;
El Kenz, A. ;
Loulidi, M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (08) :4712-4718
[17]   Large-scale compressed hydrogen storage as part of renewable electricity storage systems [J].
Elberry, Ahmed M. ;
Thakur, Jagruti ;
Santasalo-Aarnio, Annukka ;
Larmi, Martti .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (29) :15671-15690
[18]   Alloy catalysts designed from first principles [J].
Greeley, J ;
Mavrikakis, M .
NATURE MATERIALS, 2004, 3 (11) :810-815
[19]   Hydrogen sorption in orthorhombic Mg hydride at ultra-low temperature [J].
Ham, B. ;
Junkaew, A. ;
Arroyave, R. ;
Chen, J. ;
Wang, H. ;
Wang, P. ;
Majewski, J. ;
Park, J. ;
Zhou, H. -C. ;
Arvapally, Ravi K. ;
Kaipa, Ushasree ;
Omary, Mohammad A. ;
Zhang, X. Y. ;
Ren, Y. ;
Zhang, X. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (20) :8328-8341
[20]   Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb2O5 [J].
Hanada, Nobuko ;
Ichikawa, Takayuki ;
Hino, Satoshi ;
Fujii, Hironobu .
JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 420 (1-2) :46-49