Characterization of the AcrIIC1 anti-CRISPR protein for Cas9-based genome engineering in E. coli

被引:0
作者
Trasanidou, Despoina [1 ]
Potocnik, Ana [1 ]
Barendse, Patrick [1 ]
Mohanraju, Prarthana [1 ]
Bouzetos, Evgenios [1 ]
Karpouzis, Efthymios [1 ]
Desmet, Amber [1 ]
van Kranenburg, Richard [1 ,2 ]
van der Oost, John [1 ]
Staals, Raymond H. J. [1 ]
Mougiakos, Ioannis [1 ,3 ]
机构
[1] Wageningen Univ & Res, Lab Microbiol, Wageningen, Netherlands
[2] Corbion, Gorinchem, Netherlands
[3] SNIPR Biome, Copenhagen, Denmark
基金
欧洲研究理事会; 荷兰研究理事会;
关键词
ESCHERICHIA-COLI; CLOSTRIDIUM-BEIJERINCKII; BASE; DNA; SYSTEMS; CLASSIFICATION; INHIBITOR; MECHANISM; DELETION;
D O I
10.1038/s42003-023-05418-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Anti-CRISPR proteins (Acrs) block the activity of CRISPR-associated (Cas) proteins, either by inhibiting DNA interference or by preventing crRNA loading and complex formation. Although the main use of Acrs in genome engineering applications is to lower the cleavage activity of Cas proteins, they can also be instrumental for various other CRISPR-based applications. Here, we explore the genome editing potential of the thermoactive type II-C Cas9 variants from Geobacillus thermodenitrificans T12 (ThermoCas9) and Geobacillus stearothermophilus (GeoCas9) in Escherichia coli. We then demonstrate that the AcrIIC1 protein from Neisseria meningitidis robustly inhibits their DNA cleavage activity, but not their DNA binding capacity. Finally, we exploit these AcrIIC1:Cas9 complexes for gene silencing and base-editing, developing Acr base-editing tools. With these tools we pave the way for future engineering applications in mesophilic and thermophilic bacteria combining the activities of Acr and CRISPR-Cas proteins.
引用
收藏
页数:12
相关论文
共 57 条
[51]   Keeping CRISPR in check: diverse mechanisms of phage-encoded anti-CRISPRS [J].
Trasanidou, Despoina ;
Geros, Ana Sousa ;
Mohanraju, Prarthana ;
Nieuwenweg, Anna Cornelia ;
Nobrega, Franklin L. ;
Staals, Raymond H. J. .
FEMS MICROBIOLOGY LETTERS, 2019, 366 (09)
[52]   Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants [J].
Walton, Russell T. ;
Christie, Kathleen A. ;
Whittaker, Madelynn N. ;
Kleinstiver, Benjamin P. .
SCIENCE, 2020, 368 (6488) :290-+
[53]   Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean" Mutant Selection in Clostridium beijerinckii as an Example [J].
Wang, Yi ;
Zhang, Zhong-Tian ;
Seo, Seung-Oh ;
Lynn, Patrick ;
Lu, Ting ;
Jin, Yong-Su ;
Blaschek, Hans P. .
ACS SYNTHETIC BIOLOGY, 2016, 5 (07) :721-732
[54]   Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system [J].
Wang, Yi ;
Zhang, Zhong-Tian ;
Seo, Seung-Oh ;
Choi, Kijoong ;
Lu, Ting ;
Jin, Yong-Su ;
Blaschek, Hans P. .
JOURNAL OF BIOTECHNOLOGY, 2015, 200 :1-5
[55]   Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering [J].
Wang, Yu ;
Liu, Ye ;
Zheng, Ping ;
Sun, Jibin ;
Wang, Meng .
TRENDS IN BIOTECHNOLOGY, 2021, 39 (02) :165-180
[56]  
WANG ZG, 1991, GENE, V99, P31
[57]   An efficient recombination system for chromosome engineering in Escherichia coli [J].
Yu, DG ;
Ellis, HM ;
Lee, EC ;
Jenkins, NA ;
Copeland, NG ;
Court, DL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :5978-5983