The Use of Next-Generation Sequencing in Pharmacogenomics

被引:5
作者
Enko, Dietmar [1 ,2 ]
Michaelis, Simon [2 ]
Schneider, Christopher [2 ]
Schaflinger, Erich [3 ]
Baranyi, Andreas [4 ]
Schnedl, Wolfgang J. [5 ]
Muller, Daniel J. [6 ,7 ,8 ,9 ]
机构
[1] Med Univ Graz, Clin Inst Med & Chem Lab Diagnost, Auenbruggerpl 15, A-8036 Graz, Austria
[2] Gen Hosp Hochsteiermark, Inst Clin Chem & Lab Med, Leoben, Austria
[3] Med Univ Graz, Diagnost & Res Inst Human Genet, Graz, Austria
[4] Med Univ Graz, Dept Psychiat & Psychotherapeut Med, Graz, Austria
[5] Practice Gen Internal Med, Bruck An Der Mur, Austria
[6] Univ Toronto, Dept Psychiat, Toronto, ON, Canada
[7] Campbell Family Mental Hlth Res Inst, Ctr Addict & Mental Hlth, Toronto, ON, Canada
[8] Univ Toronto, Dept Pharmacol & Toxicol, Toronto, ON, Canada
[9] Univ Toronto, Inst Med Sci, Toronto, ON, Canada
关键词
next-generation sequencing; pharmacogenomics; target-ed sequencing; whole-exome sequencing; whole-ge-nome sequencing; WHOLE-GENOME; IMPLEMENTATION; VARIANTS;
D O I
10.7754/Clin.Lab.2023.230103
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Background: Next-generation sequencing (NGS) methods have become more commonly performed in clinical and research laboratories. Methods: This review summarizes the current laboratory NGS-based diagnostic approaches in pharmacogenomics including targeted multi-gene panel sequencing, whole-exome sequencing (WES), and whole-genome sequencing Results: Clinical laboratories perform multiple non-uniform types of pharmacogenetic panels, which can reduce the overall number of single-gene tests to be more cost-efficient. Compared to the targeted multi-gene panels, which are not typically designed to detect novel variants, WES and WGS have a greater potential to identify secondary pharmacogenomic findings, which might be predictive for the pharmacotherapy outcome of different patient settings. WGS overcomes the limitations of WES enabling a more accurate exome-sequencing at appropriate coverage and the sequencing of non-coding regions. Different NGS-based study designs with different test strategies and study populations, varying sample sizes, and distinct analytical and interpretation procedures lead to different identification results of pharmacogenomic variants. Conclusions: The rapid progress in gene sequencing technologies will overcome the clinical and laboratory challenges of WES and WGS. Further high throughput NGS-based pharmacogenomics studies in different populations and patient settings are necessary to expand knowledge about rare functional variants and to enhance translation in clinical practice.
引用
收藏
页码:1569 / 1575
页数:7
相关论文
共 50 条
[21]   Next-Generation Sequencing in the Mycology Lab [J].
Zoll J. ;
Snelders E. ;
Verweij P.E. ;
Melchers W.J.G. .
Current Fungal Infection Reports, 2016, 10 (2) :37-42
[22]   Next-generation sequencing: ready for the clinics? [J].
Desai, A. N. ;
Jere, A. .
CLINICAL GENETICS, 2012, 81 (06) :503-510
[23]   Next-generation sequencing technologies: An overview [J].
Hu, Taishan ;
Chitnis, Nilesh ;
Monos, Dimitri ;
Dinh, Anh .
HUMAN IMMUNOLOGY, 2021, 82 (11) :801-811
[24]   Next-generation sequencing in childhood disorders [J].
Schnekenberg, Ricardo Parolin ;
Nemeth, Andrea H. .
ARCHIVES OF DISEASE IN CHILDHOOD, 2014, 99 (03) :284-+
[25]   Diagnosis of genetic disorders in childhood with next-generation sequencing [J].
Otilia, Menyhart ;
Balazs, Gyorffy ;
Andras, Szabo .
ORVOSI HETILAP, 2022, 163 (51) :2027-2040
[26]   Application of next-generation sequencing in the diagnosis of gastric cancer [J].
Moradi, Narges ;
Moghadam, Solmaz Ohadian ;
Heidarzadeh, Siamak .
SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY, 2022, 57 (07) :842-855
[27]   Next-Generation Sequencing and the Return of Results [J].
Knoppers, Bartha Maria ;
Minh Thu Nguyen ;
Senecal, Karine ;
Tasse, Anne Marie ;
Zawati, Ma'n H. .
COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2016, 6 (10)
[28]   Next-Generation Sequencing of CYP2C19 in Stent Thrombosis: Implications for Clopidogrel Pharmacogenomics [J].
Morales-Rosado, Joel A. ;
Goel, Kashish ;
Zhang, Lingxin ;
Akerblom, Axel ;
Baheti, Saurabh ;
Black, John L. ;
Eriksson, Niclas ;
Wallentin, Lars ;
James, Stefan ;
Storey, Robert F. ;
Goodman, Shaun G. ;
Jenkins, Gregory D. ;
Eckloff, Bruce W. ;
Bielinski, Suzette J. ;
Sicotte, Hugues ;
Johnson, Stephen ;
Roger, Veronique L. ;
Wang, Liewei ;
Weinshilboum, Richard ;
Klee, Eric W. ;
Rihal, Charanjit S. ;
Pereira, Naveen L. .
CARDIOVASCULAR DRUGS AND THERAPY, 2021, 35 (03) :549-559
[29]   Use of next-generation sequencing in daily routine practice [J].
Pluzanski, Adam ;
Tysarowski, Andrzej ;
Kawecki, Maciej ;
Kucharz, Jakub ;
Winiarczyk, Kinga ;
Krzakowski, Maciej .
ONCOLOGY IN CLINICAL PRACTICE, 2023, 19 (06) :419-426
[30]   Towards genomic medicine: a tailored next-generation sequencing panel for hydroxyurea pharmacogenomics in Tanzania [J].
Nkya, Siana ;
Nzunda, Collin ;
Saukiwa, Emmanuel ;
Kaywanga, Frida ;
Buberwa, Eliud ;
Solomon, David ;
Christopher, Heavenlight ;
Ngowi, Doreen ;
Johansen, Julieth ;
Urio, Florence ;
Mgaya, Josephine ;
Karim, Salman ;
Alimohamed, Mohamed Zahir ;
Sangeda, Raphael Z. ;
Chamba, Clara ;
Chimusa, Emile R. ;
Novelli, Enrico ;
Makani, Julie .
BMC MEDICAL GENOMICS, 2024, 17 (01)