Permafrost Wetlands Are Sources of Dissolved Iron and Dissolved Organic Carbon to the Amur-Mid Rivers in Summer

被引:1
作者
Tashiro, Y. [1 ,2 ]
Yoh, M. [3 ]
Shesterkin, V. P. [4 ]
Shiraiwa, T. [5 ]
Onishi, T. [6 ]
Naito, D. [7 ,8 ]
机构
[1] Tokyo Univ Agr & Technol, United Grad Sch Agr Sci, Tokyo, Japan
[2] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi, Japan
[3] Tokyo Univ Agr & Technol, Inst Agr, Tokyo, Japan
[4] Russian Acad Sci, Far Eastern Branch, Khabarovsk Fed Res Ctr, Inst Water & Ecol Problems, Khabarovsk, Russia
[5] Hokkaido Univ, Inst Low Temp Sci, Sapporo, Hokkaido, Japan
[6] Gifu Univ, Fac Appl Biol Sci, Gifu, Japan
[7] Ctr Int Forestry Res CIFOR, Bogor, Indonesia
[8] Kyoto Univ, Fac Grad Sch Agr, Kyoto, Japan
基金
日本学术振兴会;
关键词
Amur River; biogeochemistry; permafrost; wetland; iron; organic carbon; ISOTOPE FRACTIONATION; WATER CHEMISTRY; SIBERIAN RIVERS; SURFACE WATERS; BOREAL; PHYTOPLANKTON; FE; VEGETATION; TRANSPORT; COLLOIDS;
D O I
10.1029/2023JG007481
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dissolved iron (dFe) transported by the Amur River greatly contributes to phytoplankton growth in the Sea of Okhotsk. Nevertheless, there has been little research on the source of dFe to rivers, especially in the Amur-Mid Basin, which is situated in a sporadic permafrost area. In the Amur-Mid Basin, permafrost generally exists in wetlands in flat valleys, and these permafrost wetlands could be a source of dFe to rivers. To assess the importance of permafrost wetlands for dFe export, we conducted a local survey on land and soil characteristics of wetlands, and moreover analyzed the chemical composition (dFe, dissolved organic carbon [DOC], pH, and electrical conductivity [EC]) of 24 rivers with different watershed sizes in summer. As a result of local survey, the thickly accumulated peat soils in the permafrost wetland were almost saturated and rich in organic matter from the surface to a greater depth near the permafrost table. In addition, the coverage of such permafrost wetlands in watersheds showed significant positive correlations with dFe (r(2) = 0.67, p = 1.7e-6) and DOC (r(2) = 0.48, p = 1.8e-4) and a negative correlation with EC (r(2) = 0.52, p = 7.7e-5). The dFe concentration was also correlated well with DOC concentration (r(2) = 0.68, p = 7.3e-7) but not correlated with pH and watershed area. These findings are the first to indicate that permafrost wetlands in the Amur-Mid Basin considerably contribute to dFe and DOC export to rivers, and their coverage primarily determines riverine dFe and DOC concentrations in summer.
引用
收藏
页数:16
相关论文
共 50 条
[21]   Sources and the flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau [J].
Prokushkin, A. S. ;
Pokrovsky, O. S. ;
Shirokova, L. S. ;
Korets, M. A. ;
Viers, J. ;
Prokushkin, S. G. ;
Amon, R. M. W. ;
Guggenberger, G. ;
McDowell, W. H. .
ENVIRONMENTAL RESEARCH LETTERS, 2011, 6 (04)
[22]   A coupled hydrology-biogeochemistry model to simulate dissolved organic carbon exports from a permafrost-influenced catchment [J].
Lessels, Jason S. ;
Tetzlaff, Doerthe ;
Carey, Sean K. ;
Smith, Pete ;
Soulsby, Chris .
HYDROLOGICAL PROCESSES, 2015, 29 (26) :5383-5396
[23]   Fate of Dissolved Organic Carbon in Antarctic Surface Environments During Summer [J].
Samui, Gautami ;
Antony, Runa ;
Thamban, Meloth .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2020, 125 (12)
[24]   Peatlands Versus Permafrost: Landscape Features as Drivers of Dissolved Organic Matter Composition in West Siberian Rivers [J].
Starr, Sommer F. ;
Frey, Karen E. ;
Smith, Laurence C. ;
Kellerman, Anne M. ;
Mckenna, Amy M. ;
Spencer, Robert G. M. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2024, 129 (02)
[25]   Iron and pH Regulating the Photochemical Mineralization of Dissolved Organic Carbon [J].
Gu, Yufei ;
Lensu, Anssi ;
Peramaki, Siiri ;
Ojala, Anne ;
Vahatalo, Anssi V. .
ACS OMEGA, 2017, 2 (05) :1905-1914
[26]   Fluxes of dissolved organic carbon and nitrogen to the northern Indian Ocean from the Indian monsoonal rivers [J].
Krishna, M. S. ;
Prasad, V. R. ;
Sarma, V. V. S. S. ;
Reddy, N. P. C. ;
Hemalatha, K. P. J. ;
Rao, Y. V. .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2015, 120 (10) :2067-2080
[27]   Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis [J].
Vonk, J. E. ;
Tank, S. E. ;
Mann, P. J. ;
Spencer, R. G. M. ;
Treat, C. C. ;
Striegl, R. G. ;
Abbott, B. W. ;
Wickland, K. P. .
BIOGEOSCIENCES, 2015, 12 (23) :6915-6930
[28]   Dissolved organic carbon in upland forested watersheds underlain by continuous permafrost in Central Siberia [J].
Prokushkin A.S. ;
Gavrilenko I.V. ;
Abaimov A.P. ;
Prokushkin S.G. ;
Samusenko A.V. .
Mitigation and Adaptation Strategies for Global Change, 2006, 11 (1) :223-240
[29]   Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw [J].
Vonk, J. E. ;
Mann, P. J. ;
Dowdy, K. L. ;
Davydova, A. ;
Davydov, S. P. ;
Zimov, N. ;
Spencer, R. G. M. ;
Bulygina, E. B. ;
Eglinton, T. I. ;
Holmes, R. M. .
ENVIRONMENTAL RESEARCH LETTERS, 2013, 8 (03)
[30]   First pan-Arctic assessment of dissolved organic carbon in lakes of the permafrost region [J].
Stolpmann, Lydia ;
Coch, Caroline ;
Morgenstern, Anne ;
Boike, Julia ;
Fritz, Michael ;
Herzschuh, Ulrike ;
Stoof-Leichsenring, Kathleen ;
Dvornikov, Yury ;
Heim, Birgit ;
Lenz, Josefine ;
Larsen, Amy ;
Anthony, Katey Walter ;
Jones, Benjamin ;
Frey, Karen ;
Grosse, Guido .
BIOGEOSCIENCES, 2021, 18 (12) :3917-3936