ReliaMatch: Semi-Supervised Classification with Reliable Match

被引:3
|
作者
Jiang, Tao [1 ]
Chen, Luyao [1 ]
Chen, Wanqing [1 ]
Meng, Wenjuan [2 ]
Qi, Peihan [3 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710126, Peoples R China
[2] Northwest A&F Univ, Coll Informat Engn, Xianyang 712100, Peoples R China
[3] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 15期
基金
中国国家自然科学基金;
关键词
deep learning; semi-supervised learning; pseudo labels; classification; ReliaMatch;
D O I
10.3390/app13158856
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Deep learning has been widely used in various tasks such as computer vision, natural language processing, predictive analysis, and recommendation systems in the past decade. However, practical scenarios often lack labeled data, posing challenges for traditional supervised methods. Semi-supervised classification methods address this by leveraging both labeled and unlabeled data to enhance model performance, but they face challenges in effectively utilizing unlabeled data and distinguishing reliable information from unreliable sources. This paper introduced ReliaMatch, a semi-supervised classification method that addresses these challenges by using a confidence threshold. It incorporates a curriculum learning stage, feature filtering, and pseudo-label filtering to improve classification accuracy and reliability. The feature filtering module eliminates ambiguous semantic features by comparing labeled and unlabeled data in the feature space. The pseudo-label filtering module removes unreliable pseudo-labels with low confidence, enhancing algorithm reliability. ReliaMatch employs a curriculum learning training mode, gradually increasing training dataset difficulty by combining selected samples and pseudo-labels with labeled data. This supervised approach enhances classification performance. Experimental results show that ReliaMatch effectively overcomes challenges associated with the underutilization of unlabeled data and the introduction of error information, outperforming the pseudo-label strategy in semi-supervised classification.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Semi-Supervised Classification with Cluster Ensemble
    Berikov, Vladimir
    Karaev, Nikita
    Tewari, Ankit
    2017 INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING, COMPUTER AND INFORMATION SCIENCES (SIBIRCON), 2017, : 245 - 250
  • [22] An Exploration of Semi-supervised Text Classification
    Lien, Henrik
    Biermann, Daniel
    Palumbo, Fabrizio
    Goodwin, Morten
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022, 2022, 1600 : 477 - 488
  • [23] Ant Based Semi-supervised Classification
    Halder, Anindya
    Ghosh, Susmita
    Ghosh, Ashish
    SWARM INTELLIGENCE, 2010, 6234 : 376 - +
  • [24] Semi-supervised Classification by Probabilistic Relaxation
    Martinez-Uso, Adolfo
    Pla, Filiberto
    Martinez Sotoca, Jose
    Anaya-Sanchez, Henry
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, 2011, 7042 : 331 - 338
  • [25] Semi-supervised Classification by Local Coordination
    Yang, Gelan
    Xu, Xue
    Yang, Gang
    Zhang, Jianming
    NEURAL INFORMATION PROCESSING: MODELS AND APPLICATIONS, PT II, 2010, 6444 : 517 - +
  • [26] Semi-supervised collaborative text classification
    Jin, Rong
    Wu, Ming
    Sukthankar, Rahul
    MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 600 - +
  • [27] Semi-supervised ensemble classification in subspaces
    Yu, Guoxian
    Zhang, Guoji
    Yu, Zhiwen
    Domeniconi, Carlotta
    You, Jane
    Han, Guoqiang
    APPLIED SOFT COMPUTING, 2012, 12 (05) : 1511 - 1522
  • [28] Semi-supervised classification with privileged information
    Zhiquan Qi
    Yingjie Tian
    Lingfeng Niu
    Bo Wang
    International Journal of Machine Learning and Cybernetics, 2015, 6 : 667 - 676
  • [29] Semi-supervised generalized eigenvalues classification
    Marco Viola
    Mara Sangiovanni
    Gerardo Toraldo
    Mario R. Guarracino
    Annals of Operations Research, 2019, 276 : 249 - 266
  • [30] Semi-supervised Genetic Programming for Classification
    Arcanjo, Filipe de L.
    Pappa, Gisele L.
    Bicalho, Paulo V.
    Meira, Wagner, Jr.
    da Silva, Altigran S.
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1259 - 1266