On the Hahn's property for matrix orthogonal polynomials on the unit circle

被引:0
作者
Fuentes, Edinson [1 ]
Garza, Luis E. [2 ]
机构
[1] Univ Llanos, Fac Ciencias Basicas & Ingn, Villavicencio, Colombia
[2] Univ Colima, Fac Ciencias, Colima, Mexico
关键词
Matrix orthogonal polynomials; Hahn's property; Verblunsky's matrix coefficients;
D O I
10.1016/j.laa.2023.06.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this contribution, we characterize the sequences of matrix orthogonal polynomials on the unit circle (MOPUC) whose derivatives are also orthogonal, i.e. the orthogonal sequences satisfying the Hahn's property. Equivalently, we characterize classical matrix linear functionals on the unit circle.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:118 / 141
页数:24
相关论文
共 40 条
[21]   Matrix inner product having a matrix symmetric second order differential operator [J].
Duran, AJ .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (02) :585-600
[22]   A CLASS OF MATRIX ORTHOGONAL POLYNOMIALS ON THE UNIT-CIRCLE [J].
ESPANOL, FM ;
GONZALEZ, IR .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 121 :233-241
[23]  
Fuhrmann P.A, 1987, REND SEM MAT U POLIT, P68
[24]   MATRIX ORTHOGONAL POLYNOMIALS ON THE UNIT-CIRCLE [J].
GERONIMO, JS .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (07) :1359-1365
[25]  
Gohberg I, 1988, OPER THEORY ADV APPL, V34
[26]  
Hahn Wolfgang., 1935, Mathematische Zeitschrift, V39, P634, DOI [10.1007/BF01201380, DOI 10.1007/BF01201380]
[27]   PREDICTION THEORY AND FOURIER SERIES IN SEVERAL VARIABLES [J].
HELSON, H ;
LOWDENSLAGER, D .
ACTA MATHEMATICA, 1958, 99 (3-4) :165-202
[28]  
Horn R.A., 2013, Matrix Analysis
[29]   ON NONUNIQUE EQUILIBRIUM STATES AND BUCKLING MECHANISM OF SPHERICAL SHELLS [J].
KELLER, HB ;
WOLFE, AW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1965, 13 (03) :674-&
[30]   ORTHOGONAL POLYNOMIALS ON THE UNIT-CIRCLE AND THEIR DERIVATIVES [J].
MARCELLAN, F ;
MARONI, P .
CONSTRUCTIVE APPROXIMATION, 1991, 7 (03) :341-348