Linear codes associated to symmetric determinantal varieties: Even rank case

被引:2
|
作者
Beelen, Peter [1 ]
Johnsen, Trygve [2 ]
Singh, Prasant [3 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, Matematiktorvet 303B, DK-2800 Lyngby, Denmark
[2] UiT Arctic Univ Norway, Dept Math & Stat, Hansine Hansens Veg 18, N-9019 Tromso, Norway
[3] IIT Jammu, Dept Math, Srinagar 181221, Jammu & Kashmir, India
关键词
Symmetric determinantal varieties; Symmetric matrices; Linear code; Minimum distance;
D O I
10.1016/j.ffa.2023.102240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider linear codes over a finite field Fq, for odd q, derived from determinantal varieties, obtained from symmetric matrices of bounded ranks. A formula for the weight of a codeword is derived. Using this formula, we have computed the minimum distance for the codes corresponding to matrices upperbounded by any fixed, even rank. A conjecture is proposed for the cases where the upper bound is odd. At the end of the article, tables for the weights of these codes, for spaces of symmetric matrices up to order 5, are given.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Higher-Degree Symmetric Rank-Metric Codes
    Bik, Arthur
    Neri, Alessandro
    SIAM Journal on Applied Algebra and Geometry, 2024, 8 (04) : 931 - 967
  • [42] On equivalence of maximum additive symmetric rank-distance codes
    Yue Zhou
    Designs, Codes and Cryptography, 2020, 88 : 841 - 850
  • [43] On equivalence of maximum additive symmetric rank-distance codes
    Zhou, Yue
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (05) : 841 - 850
  • [44] Symmetric pairs and associated commuting varieties
    Panyushev, Dmitri
    Yakimova, Oksana
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 143 : 307 - 321
  • [45] Linear codes and doubly transitive symmetric designs
    Parker, Christopher
    Tonchev, Vladimir D.
    Linear Algebra and Its Applications, 1995, 226-228
  • [46] Rank and Pairs of Rank and Dimension of Kernel of ZpZp2-Linear Codes
    Li, Xiaoxiao
    Shi, Minjia
    Wang, Shukai
    Lu, Haodong
    Zheng, Yuxuan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (05) : 3202 - 3212
  • [47] Rank-metric codes, linear sets, and their duality
    John Sheekey
    Geertrui Van de Voorde
    Designs, Codes and Cryptography, 2020, 88 : 655 - 675
  • [48] A NEW FAMILY OF LINEAR MAXIMUM RANK DISTANCE CODES
    Sheekey, John
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (03) : 475 - 488
  • [49] Linear Maximum Rank Distance Codes of Exceptional Type
    Bartoli, Daniele
    Zini, Giovanni
    Zullo, Ferdinando
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (06) : 3627 - 3636
  • [50] Rank-metric codes, linear sets, and their duality
    Sheekey, John
    Van de Voorde, Geertrui
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (04) : 655 - 675