Expanding the dimensionality of proton conduction enables ultrahigh anhydrous proton conductivity of phosphoric acid-doped covalent-organic frameworks

被引:15
作者
Yang, Qianqian [2 ]
Li, Xinyu [1 ]
Xie, Changsong [1 ]
Liu, Ning [2 ]
Yang, Jianjian [1 ]
Kong, Zhihui [1 ]
Kang, Zixi [1 ]
Wang, Rongming [1 ,2 ]
Li, Xiyou [1 ,2 ]
Sun, Daofeng [1 ]
机构
[1] China Univ Petr East China, Sch Mat Sci & Engn, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Chem & Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
covalent organic framework; proton conductors; anhydrous proton conduction; phosphoric acid (PA); doping; DESIGN; CRYSTALLINE; MEMBRANE; IMIDAZOLE;
D O I
10.1007/s12274-023-5812-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is of great significance to develop high-temperature anhydrous proton conducting materials. Herein, we report a new strategy to significantly enhance the proton conductivity of covalent organic frameworks (COFs) through expanding the dimensionality of proton conduction. Three COF-based composites, COF-1@PA, COF-2@PA, and COF-3@PA (PA: phosphoric acid), are prepared by PA doping of three COFs with similar pore sizes but different amounts of hydrophilic groups. With the increase of hydrophilic groups, COFs can load more PA because of the enhanced hydrogen-bonding interactions between PA and the frameworks. powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) analyses show that PA can not only enter the channels of COF-3, but also insert into its 2D interlayers. This expands the proton conduction pathways from one-dimensional (1D) to three-dimensional (3D), which greatly improves the proton conductivity of COF-3. Meanwhile, the confinement effect of 1D channels and 2D layers of COF-3 also makes the hydrogen-bonded networks more orderly in COF-3@PA-30 (30 mu L of PA loaded on COF-3). At 150 degrees C, COF-3@PA30 exhibits an ultrahigh anhydrous proton conductivity of 1.4 S center dot cm(-1), which is a record of anhydrous proton conductivity reported to date. This work develops a new strategy for increasing the proton conductivity of 2D COF materials.
引用
收藏
页码:10946 / 10955
页数:10
相关论文
共 50 条
[41]   Sulfonic acid loaded self-standing covalent organic membrane for proton conduction [J].
Sasmal, Himadri Sekhar ;
Banerjee, Rahul .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 :C1150-C1150
[42]   Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications [J].
Yang, Yi ;
He, Xueyi ;
Zhang, Penghui ;
Andaloussi, Yassin H. ;
Zhang, Hailu ;
Jiang, Zhongyi ;
Chen, Yao ;
Ma, Shengqian ;
Cheng, Peng ;
Zhang, Zhenjie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (09) :3678-3684
[43]   Ultrahigh proton conductivity of four ionic hydrogen-bonded organic frameworks based on functionalized terephthalates [J].
Song, Yong-Jie ;
Xie, Li-Xia ;
Sang, Ya-Li ;
Zhang, Yu-Hong ;
Li, Zi-Feng ;
Li, Gang .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 674 :1058-1070
[44]   Confining H3PO4 network in covalent organic frameworks enables proton super flow [J].
Tao, Shanshan ;
Zhai, Lipeng ;
Wonanke, A. D. Dinga ;
Addicoat, Matthew A. ;
Jiang, Qiuhong ;
Jiang, Donglin .
NATURE COMMUNICATIONS, 2020, 11 (01)
[45]   Covalent organic frameworks with flexible side chains in hybrid PEMs enable highly efficient proton conductivity [J].
Liu, Ziwen ;
Pang, Xiao ;
Shi, Benbing ;
Xing, Na ;
Liu, Yawei ;
Lyu, Bohui ;
Zhang, Leilang ;
Kong, Yan ;
Wang, Sijia ;
Gao, Zhong ;
Xue, Rou ;
Jing, Tianyu ;
Liu, Changkun ;
Bai, Qinhuidan ;
Wu, Hong ;
Jiang, Zhongyi .
MATERIALS HORIZONS, 2024, 11 (01) :141-150
[46]   Asymmetric Hydrophosphonylation of Imines to Construct Highly Stable Covalent Organic Frameworks with Efficient Intrinsic Proton Conductivity [J].
Lu, Zhenwu ;
Yang, Chunying ;
He, Liu ;
Hong, Jing ;
Huang, Chuhong ;
Wu, Tong ;
Wang, Xiu ;
Wu, Zhangfeng ;
Liu, Xiaohui ;
Miao, Zhongxi ;
Zeng, Birong ;
Xu, Yiting ;
Yuan, Conghui ;
Dai, Lizong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (22) :9624-9633
[47]   Dimensionally-stable phosphoric acid-doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells [J].
Li, Xiaobai ;
Ma, Hongwei ;
Shen, Yanchao ;
Hu, Wei ;
Jiang, Zhenhua ;
Liu, Baijun ;
Guiver, Michael D. .
JOURNAL OF POWER SOURCES, 2016, 336 :391-400
[48]   Synergy between Isomorphous Acid and Basic Metal-Organic Frameworks for Anhydrous Proton Conduction of Low-Cost Hybrid Membranes at High Temperatures [J].
Dong, Xi-Yan ;
Wang, Jun-Hao ;
Liu, Shan-Shan ;
Han, Zhen ;
Tang, Qing-Jie ;
Li, Fei-Fei ;
Zang, Shuang-Quan .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (44) :38209-38216
[49]   Intrinsic proton conduction in 2D sulfonated covalent organic frameworks through a post-synthetic strategy [J].
Zhang, Yuwei ;
Li, Chunzhi ;
Liu, Zhaohan ;
Yao, Yuze ;
Hasan, Md Mahmudul ;
Liu, Qianyu ;
Wan, Jieqiong ;
Li, Zhongping ;
Li, He ;
Nagao, Yuki .
CRYSTENGCOMM, 2021, 23 (36) :6234-6238
[50]   Nitrogen-Rich Covalent Organic Frameworks Composited High-Temperature Proton Exchange Membranes with Ultralow Volume Expansion and Reduced Phosphoric Acid Leakage [J].
Zhang, Weiyu ;
Ji, Jiaqi ;
Li, Hong ;
Li, Jie ;
Sun, Yiming ;
Tang, Yi ;
Yang, Tianqi ;
Jin, Weiyi ;
Zhao, Yongqing ;
Huang, Congshu ;
Gong, Chenliang .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (39) :52309-52325