Design and Realization of Compact Horizontal-Type High-Precision Atom Gravity Gradiometer

被引:1
|
作者
Lu Wei [1 ,2 ]
Zhang Xiaowei [1 ]
Xu Weihao [1 ,2 ]
Zhu Lei [1 ]
Zhong Jiaqi [1 ,3 ]
Wang Jin [1 ,3 ,4 ]
Zhan Mingsheng [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Innovat Acad Precis Measurement Sci & Technol, Wuhan 430071, Hubei, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[3] Hefei Natl Lab, Hefei 230094, Anhui, Peoples R China
[4] Wuhan Inst Quantum Technol, Wuhan 430206, Hubei, Peoples R China
关键词
INTERFEROMETRY;
D O I
10.3788/LOP230723
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The gravity gradiometer has important application value in resource exploration, geophysical research, autonomous navigation and other fields. The gravity gradiometer based on atom interferometers is a new type of highprecision measuring instrument, and its miniaturization and practicality are the core problems to be solved in its wide application. We design and implement a compact high-precision atom gravity gradiometer capable of measuring horizontal components. The instrument adopts the technical scheme of combining all- quartz vacuum cavity and accessory frame, which reduces the volume of the sensor part to 105 L. It adopts a double-sided optical modular structure, which reduces the volume of the optical unit to 36 L. These evolutions make the instrument very easy to carry. In laboratory, the sensitivity of the instrument is measured to be 320 E root Hz, and the resolution is 3. 3 E@4800 s ( 1 E= 1x10(-9) s(-2)).
引用
收藏
页数:10
相关论文
共 14 条
  • [1] Testing gravity with cold-atom interferometers
    Biedermann, G. W.
    Wu, X.
    Deslauriers, L.
    Roy, S.
    Mahadeswaraswamy, C.
    Kasevich, M. A.
    [J]. PHYSICAL REVIEW A, 2015, 91 (03)
  • [2] Compact differential gravimeter at the quantum projection-noise limit
    Janvier, Camille
    Menoret, Vincent
    Desruelle, Bruno
    Merlet, Sebastien
    Landragin, Arnaud
    dos Santos, Franck Pereira
    [J]. PHYSICAL REVIEW A, 2022, 105 (02)
  • [3] ATOMIC INTERFEROMETRY USING STIMULATED RAMAN TRANSITIONS
    KASEVICH, M
    CHU, S
    [J]. PHYSICAL REVIEW LETTERS, 1991, 67 (02) : 181 - 184
  • [4] Lee J.B., 2001, EXPLOR GEOPHYS, V32, P247, DOI [10.1071/eg01247, DOI 10.1071/EG01247]
  • [5] Lv W, 2022, PHYS REV APPL, V18
  • [6] Three-axis superconducting gravity gradiometer for sensitive gravity experiments
    Moody, MV
    Paik, HJ
    Canavan, ER
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (11): : 3957 - 3974
  • [7] Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer
    Snadden, MJ
    McGuirk, JM
    Bouyer, P
    Haritos, KG
    Kasevich, MA
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (05) : 971 - 974
  • [8] THE FEYNMAN PATH-INTEGRAL APPROACH TO ATOMIC INTERFEROMETRY - A TUTORIAL
    STOREY, P
    COHENTANNOUDJI, C
    [J]. JOURNAL DE PHYSIQUE II, 1994, 4 (11): : 1999 - 2027
  • [9] Quantum sensing for gravity cartography
    Stray, Ben
    Lamb, Andrew
    Kaushik, Aisha
    Vovrosh, Jamie
    Rodgers, Anthony
    Winch, Jonathan
    Hayati, Farzad
    Boddice, Daniel
    Stabrawa, Artur
    Niggebaum, Alexander
    Langlois, Mehdi
    Lien, Yu-Hung
    Lellouch, Samuel
    Roshanmanesh, Sanaz
    Ridley, Kevin
    de Villiers, Geoffrey
    Brown, Gareth
    Cross, Trevor
    Tuckwell, George
    Faramarzi, Asaad
    Metje, Nicole
    Bongs, Kai
    Holynski, Michael
    [J]. NATURE, 2022, 602 (7898) : 590 - +
  • [10] In orbit nano-g measurements, lessons for future space missions
    Touboul, P
    Foulon, B
    Rodrigues, M
    Marque, JP
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2004, 8 (05) : 431 - 441