Mass concentration and uniqueness of ground states for mass subcritical rotational nonlinear Schrodinger equations

被引:0
作者
Gao, Yongshuai [1 ]
Luo, Yong [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国博士后科学基金;
关键词
Rotational nonlinear Schrodinger equations; Ground states; Mass concentration; Local uniqueness; STANDING WAVES; STABILITY; SYMMETRY;
D O I
10.1016/j.na.2023.113246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers ground states of mass subcritical rotational nonlinear Schrodinger equation-.6u + V(x)u + iQ(x perpendicular to center dot Vu) = mu u + rho p-1|u|p-1u in R2, where V(x) is an external potential, Q > 0 characterizes the rotational velocity of the trap V(x), 1 < p < 3, and rho > 0 describes the strength of the attractive interactions. It is shown that ground states of the above equation can be described equivalently by minimizers of the L2-constrained variational problem. We prove that minimizers exist for any rho E (0, oo) when 0 < Q < Q*, where 0 < Q* := Q*(V) < oo denotes the critical rotational velocity. While Q > Q*, there admits no minimizers for any rho E (0, oo). For fixed 0 < Q < Q*, by using energy estimates and blow-up analysis, we also analyze the mass concentration behavior of minimizers as rho-+ oo. Finally, we prove that up to a constant phase, there exists a unique minimizer when Q E (0, Q*) is fixed and rho > 0 is large enough.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:26
相关论文
共 35 条
  • [1] Aftalion Amandine, 2006, Progress in Nonlinear Differential Equations and Their Applications, V67
  • [2] MATHEMATICAL THEORY AND NUMERICAL METHODS FOR BOSE-EINSTEIN CONDENSATION
    Bao, Weizhu
    Cai, Yongyong
    [J]. KINETIC AND RELATED MODELS, 2013, 6 (01) : 1 - 135
  • [3] Cao DM, 2021, CAM ST AD M, P205
  • [4] Uniqueness of positive bound states with multi-bump for nonlinear Schrodinger equations
    Cao, Daomin
    Li, Shuanglong
    Luo, Peng
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (04) : 4037 - 4063
  • [5] Cazenave, 2003, SEMILINEAR SCHRODING
  • [6] CAZENAVE T, 1988, MAT APL COMPUT, V7, P155
  • [7] ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS
    CAZENAVE, T
    LIONS, PL
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) : 549 - 561
  • [8] Bosons in anisotropic traps: Ground state and vortices
    Dalfovo, F
    Stringari, S
    [J]. PHYSICAL REVIEW A, 1996, 53 (04): : 2477 - 2485
  • [9] On the prescribed scalar curvature problem in RN, local uniqueness and periodicity
    Deng, Yinbin
    Lin, Chang-Shou
    Yan, Shusen
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (06): : 1013 - 1044
  • [10] ESTEBAN MJ, 1989, PROG NONLIN, V1, P401