Conditions of boundary layer separation for Boussinesq equations

被引:0
作者
Hu, Biyan [1 ]
Zhang, Minxin [1 ]
Luo, Hong [1 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Sichuan, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2023年 / 30卷 / 05期
基金
中国国家自然科学基金;
关键词
Boundary layer separation; Boussinesq equations; Incompressible flows; Structural bifurcation; GLOBAL WELL-POSEDNESS; STRUCTURAL BIFURCATION; SYSTEM; REGULARITY; VISCOSITY; STEADY; DECAY;
D O I
10.1007/s00030-023-00866-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze structural bifurcation of solutions to 2-D incompressible Boussinesq equations, where no-slip boundary condition for velocity and nonhomogenous Dirichlet boundary condition for temperature are considered. We get two conditions for boundary layer separation by Taylor expansion of the functions in Boussinesq equations and structural bifurcation theory for flows with Dirichlet boundary conditions. Furthermore, the conditions, determined by initial values, the external force and the temperature on the boundary, can predict when and where boundary layer separation of the Boussinesq equations will occur. The basic theory on boundary layer separation in this manuscript comes from the book Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics written by Ma and Wang.
引用
收藏
页数:15
相关论文
共 35 条
[1]   On the global well-posedness for Boussinesq system [J].
Abidi, H. ;
Hmidi, T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :199-220
[2]   Global regularity results for the 2D Boussinesq equations with partial dissipation [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Shang, Haifeng ;
Wu, Jiahong ;
Xu, Xiaojing ;
Ye, Zhuan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) :1893-1917
[3]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[4]  
Chorin A. J., 1997, MATH INTRO FLUID MEC
[5]   Infinite Prandtl number convection [J].
Constantin, P ;
Doering, CR .
JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) :159-172
[6]   The Leray and Fujita-Kato theorems for the Boussinesq system with partial viscosity [J].
Danchin, Raphael ;
Paicu, Marius .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2008, 136 (02) :261-309
[7]   SHARP DECAY ESTIMATES FOR AN ANISOTROPIC LINEAR SEMIGROUP AND APPLICATIONS TO THE SURFACE QUASI-GEOSTROPHIC AND INVISCID BOUSSINESQ SYSTEMS [J].
Elgindi, Tarek M. ;
Widmayer, Klaus .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (06) :4672-4684
[8]   High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex [J].
Gargano, F. ;
Sammartino, M. ;
Sciacca, V. .
COMPUTERS & FLUIDS, 2011, 52 :73-91
[9]   Structural bifurcation of 2-D nondivergent flows with Dirichlet boundary conditions: Applications to boundary-layer separation [J].
Ghil, M ;
Ma, T ;
Wang, SH .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (05) :1576-1596
[10]   Boundary-layer separation and adverse pressure gradient for 2-D viscous incompressible flow [J].
Ghil, M ;
Liu, JG ;
Wang, C ;
Wang, SH .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 197 (1-2) :149-173