Singularities of determinantal pure pairs

被引:0
作者
Carvajal-Rojas, Javier [1 ,2 ]
Vilpert, Arnaud
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Heverlee, Belgium
[2] Univ Costa Rica, Escuela Matemat, San Jose 11501, Costa Rica
来源
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA | 2023年 / 16卷 / 04期
基金
欧洲研究理事会;
关键词
Determinantal varieties; Purely F-regular pairs; Purely log terminal pairs; TEST IDEALS; RINGS;
D O I
10.1007/s40574-023-00361-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a generic determinantal affine variety over a perfect field of characteristic p >= 0 and P subset of X be a standard prime divisor generator of Cl X congruent to Z. We prove that the pair ( X, P) is purely F-regular if p > 0 and so that ( X, P) is purely log terminal (PLT) if p = 0 and (X, P) is log Q-Gorenstein. In general, using recent results of Z. Zhuang and S. Lyu, we show that (X, P) is of PLT-type, i.e. there is a Q-divisor Delta with coefficients in [0, 1) such that ( X, P + Delta) is PLT.
引用
收藏
页码:763 / 786
页数:24
相关论文
共 33 条
[1]   Various proofs of Sylvester's (determinant) identity [J].
Akritas, AG ;
Akritas, EK ;
Malaschonok, GI .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1996, 42 (4-6) :585-593
[2]  
Arbarello E, 2011, GRUNDLEHR MATH WISS, V268, P1, DOI 10.1007/978-3-540-69392-5_1
[3]  
Blickle M, 2013, J ALGEBRAIC GEOM, V22, P49
[4]   F-signature of pairs and the asymptotic behavior of Frobenius splittings [J].
Blickle, Manuel ;
Schwede, Karl ;
Tucker, Kevin .
ADVANCES IN MATHEMATICS, 2012, 231 (06) :3232-3258
[5]  
BOURBAKI N., 1970, ELEMENTS MATH ALGEBR
[6]  
Braun L., 2021, ARXIV
[7]  
BRUNS W, 1988, LECT NOTES MATH, V1327, P1
[8]  
Carvajal-Rojas Javier, 2019, ARXIV
[9]  
Fedder R., 1989, MSRI PUBLICATIONS, V15, P227
[10]  
Gabber O., 2004, STRUCTURES GEOMETRIC, P711, DOI 10.1515/9783110198133.2.711