EXISTENCE AND WEAK-STRONG UNIQUENESS FOR GLOBAL WEAK SOLUTIONS FOR THE VISCOELASTIC PHASE SEPARATION MODEL IN THREE SPACE DIMENSIONS

被引:0
作者
Brunk, Aaron [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Dept Math, Numer Math, Staudingerweg 9, D-55099 Mainz, Germany
关键词
  Relative energy; weak-strong uniqueness; viscoelastic phase separation; partial differential equations; CAHN-HILLIARD EQUATION; COMPLEX FLUIDS; THERMODYNAMICS; DYNAMICS;
D O I
10.3934/dcds.2023004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to prove the global-in-time existence of weak solutions for a viscoelastic phase separation model in three space dimensions. To this end, we apply the relative energy concept provided by [7]. We consider the case of regular polynomial-type potentials and positive mobilities, as well as the degenerate case with logarithmic potential and vanishing mobility.
引用
收藏
页码:2120 / 2136
页数:17
相关论文
共 24 条
[1]  
A. J, 2016, SpringerBriefs in Mathematics
[2]   EXISTENCE AND EQUILIBRATION OF GLOBAL WEAK SOLUTIONS TO KINETIC MODELS FOR DILUTE POLYMERS I: FINITELY EXTENSIBLE NONLINEAR BEAD-SPRING CHAINS [J].
Barrett, John W. ;
Sueli, Endre .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (06) :1211-1289
[3]   Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion [J].
Bathory, Michal ;
Bulicek, Miroslav ;
Malek, Josef .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :501-521
[4]  
Boyer F, 1999, ASYMPTOTIC ANAL, V20, P175
[5]   Global existence of weak solutions to viscoelastic phase separation: part II. Degenerate case [J].
Brunk, Aaron ;
Lukacova-Medvid'ova, Maria .
NONLINEARITY, 2022, 35 (07) :3459-3486
[6]   Global existence of weak solutions to viscoelastic phase separation part: I. Regular case [J].
Brunk, Aaron ;
Lukacova-Medvid'ova, Maria .
NONLINEARITY, 2022, 35 (07) :3417-3458
[7]   Analysis of a viscoelastic phase separation model [J].
Brunk, Aaron ;
Duenweg, Burkhard ;
Egger, Herbert ;
Habrich, Oliver ;
Lukacova-Medvid'ova, Maria ;
Spiller, Dominic .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (23)
[8]   The Cahn-Hilliard Equation with Logarithmic Potentials [J].
Cherfils, Laurence ;
Miranville, Alain ;
Zelik, Sergey .
MILAN JOURNAL OF MATHEMATICS, 2011, 79 (02) :561-596
[9]   Weak Solutions for the Cahn-Hilliard Equation with Degenerate Mobility [J].
Dai, Shibin ;
Du, Qiang .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 219 (03) :1161-1184
[10]  
Dal Passo R, 1998, SIAM J MATH ANAL, V29, P321