Global Cauchy problems for the nonlocal (derivative) NLS in Eσs

被引:7
作者
Chen, Jie [1 ,2 ]
Lu, Yufeng [1 ,3 ]
Wang, Baoxiang [1 ,3 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
[2] Inst Appl Phys & Computat Math, POB 8009, Beijing 8009, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
NONLINEAR SCHRODINGER-EQUATION; WELL-POSEDNESS; SCATTERING;
D O I
10.1016/j.jde.2022.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for the nonlocal (derivative) NLS in super-critical function spaces Essfor which the norms are defined by ||f|| E-sigma(s) = || <xi >(sigma) 2(s|xi|) (f) over cap(xi)||(L2), s< 0, sigma is an element of R. Any Sobolev space H-r is a subspace of E-sigma(s), i.e., H-r subset of E-sigma(s) for any r, sigma is an element of R and s< 0. Let s < 0 and sigma > -1/2(sigma > 0) for the nonlocal NLS (for the nonlocal derivative NLS). We show the global existence and uniqueness of the solutions if the initial data belong to E-sigma(s) and their Fourier transforms are supported in (0, infinity), the smallness conditions on the initial data in E-sigma(s) are not required for the global solutions. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:767 / 806
页数:40
相关论文
共 33 条
[1]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[2]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[3]  
Bahouri H, 2020, Arxiv, DOI arXiv:2012.01923
[4]  
Bergh J., 1976, Interpolation spaces. An introduction
[5]  
Chen J., 2022, ARXIV
[6]   Navier-Stokes equation in super-critical spaces Ep,qs [J].
Feichtinger, Hans G. ;
Groechenig, Karlheinz ;
Li, Kuijie ;
Wang, Baoxiang .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (01) :139-173
[7]   General soliton solution to a nonlocal nonlinear Schrodinger equation with zero and nonzero boundary conditions [J].
Feng, Bao-Feng ;
Luo, Xu-Dan ;
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2018, 31 (12) :5385-5409
[8]   Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrodinger equation [J].
Gadzhimuradov, T. A. ;
Agalarov, A. M. .
PHYSICAL REVIEW A, 2016, 93 (06)
[9]  
Gelfand I.M., 1968, GEN FUNCTIONS SPACES, V2
[10]   Instability of an integrable nonlocal NLS [J].
Genoud, Francois .
COMPTES RENDUS MATHEMATIQUE, 2017, 355 (03) :299-303